
Getting Insight into

HPC Code Behaviour

Meet the POP CoE:

Fouzhan Hosseini, NAG Ltd

Renowned in Numerical

Algorithms & HPC
Over the last 50 years, brands such as AMD,

Arm, Intel, and Nvidia have become reliant

on NAG IP

NAG provides

Who is NAG?

Solutions

• NAG Library & custom

algorithm development

• Fortran compiler

• Algorithmic differentiation

Consultancy

• Cloud HPC migration

• HPC technology

evaluation & benchmarking

• Code porting & optimisation

Global SME
With hubs in Asia, Europe and

the US, NAG can support clients
in their own time zone

• Better Parallel Code

• Boost scalability of HPC Applications

o Faster results, novel solutions, reduced expenditure

o More efficient use of HPC infrastructures

o In prep for Exascale computing

• A Team with

o Excellence in performance tools and tuning

o Excellence in programming models and practices

o R & D background in real academic and industrial use cases

Performance Optimisation and Productivity

A Centre of Excellence in HPC

What & who for

Methodology & Tools

• Quantitative picture of

application behavior

• Hierarchical set of

Performance metrics

• Open-source tools

that support high-

scale analysis

Communities

• All domains of science &

technology

• SMEs or large industries

• Academia & Research
institutes

• All other HPC CoEs

• HPC Centres

Services

• Performance assessment

• Code Optimization

• Transversal across all

programing models,
architectures & scale

• Education & training

Parallel performance is hard to understand

Cube, perf. metrics per routines/call stack,

data collected by Scalasca/Score-P

Paraver, timeline view of program

execution, data collected by Extrae

speed-up and efficiency plots?

How do we measure the performance of our parallel programs?

collect data using performance monitoring tools?

Tracing is powerful

Main Problem

But can generates overwhelming amount of data

Difficult to know where to start

and what to look for

Lack of quantitative

understanding of the actual

behavior of a parallel application

The POP metrics:

A simple but powerful solution

Devise a simple set of performance metrics...

• using values easily obtained from the trace data

• where low values indicate specific causes of poor parallel performance

These metrics then are used to understand...

• what are the causes of poor performance

• what to look for in the trace data

POP MPI Parallel Efficiency Metrics

×

×

×

×

Parallel Efficiency (PE)

Describe how well the execution of your code

is working in parallel

PE = LB × CommE

Global Efficiency (GE)

Describes how well your parallel application

scales.

GE = PE × Comps
Computational Scaling (CS)

Describe how well the computational

load of an application scales with the

number of processors/threads.

CS=CT_O/CT_n

Communication Efficiency (CE)

Reflects the loss of efficiency by

communication.

CE = max (CT/TT) = SE × TE

Load Balance (LB)

Measures how well work is distributed to

threads/processes in the application.

LB = average (CT) / max (CT)

Transfer Efficiency (TE)

Describes the loss of efficiency due to

actual data transfer time.

TE = TT on ideal network / TT

Serialisation Efficiency (SE)

Describes efficiency loss due to

dependencies, waiting in MPI calls, ets.

SE = max(CT / TT on ideal network)

Instruction Scaling

Compares the total number of instructions

executed for different numbers of

threads/processes.

IPC Scaling

Compares how many instructions per cycle

(IPC) are executed for different numbers of

threads/processes.

Frequency Scaling

Compares the processor frequency for

different numbers of threads/processes.

CT = Computation Time | TT = Total Time | Ideal network data transfer takes zero time

F
o

r
m

o
re

 d
e

ta
ils

 v
is

it
 h

tt
p

s
:/
/p

o
p

-c
o

e
.e

u

https://pop-coe.eu/

POP performance monitoring tools

• Developing open-source tools

o Extrae (tracing), Paraver (visualisation) & Dimemas

https://tools.bsc.es

o Score-P (profiling and tracing), Scalasca (Post Processing) & Cube (visualisation) https://tools.bsc.es/

o MAQAO: synthetic reports and hints with a focus on core performance http://www.maqao.org

o PyPOP: automated generation of POP metrics from Extrae traces
https://github.com/numericalalgorithmsgroup/pypop

For more help on how to use these tools and calculate the POP metrics

see the POP website learning material & online training
https://pop-coe.eu/further-information/learning-material and https://pop-coe.eu/further-information/online-training

Other tools can also be used

https://tools.bsc.es/
https://tools.bsc.es/
http://www.maqao.org/
https://github.com/numericalalgorithmsgroup/pypop
https://pop-coe.eu/further-information/learning-material
https://pop-coe.eu/further-information/online-training

Example 1

• Code: C++, MPI

• Platform: MareNostrum-IV

o Dual Intel Xeon Platinum 8160 Skylake 48-core nodes

• Performance data collection:

o Score-P/Scalasca using compiler instrumentation filter
and hardware counters

• Scale: 48-768 cores (1-16 nodes)

A Computational Fluid Dynamics Code

Example 1

POP Metrics

Number of cores 48 96 192 384 768

Global Efficiency 0.93 0.94 0.93 0.84 0.76

Parallel Efficiency 0.93 0.91 0.87 0.77 0.68

Load balance 0.99 0.98 0.98 0.97 0.95

Communication Efficiency 0.94 0.92 0.89 0.79 0.72

Serialisation 0.95 0.94 0.92 0.85 0.81

Transfer efficiency 0.99 0.99 0.97 0.94 0.89

Computational Scaling 1.00 1.03 1.07 1.09 1.12

Instruction Scaling 1.00 0.99 0.97 0.95 0.92

IPC Scaling 1.00 1.05 1.10 1.18 1.27

Frequency Scaling 1.00 1.00 1.00 0.98 0.96

We immediately see that

Serialisation is the main

factor that limits the

scalability

Example 1

The MPI collective calls and

imbalanced computation

regions within a Library call

were the main causes of the

serialisation on 768 cores

Numbers report percentage of total

delay cost for Example 2 - ROI on
768 cores

Inclusive values (⯈)

Exclusive values (⯆)

…
…

…
…

Serialisation
• typically happens due to at least one process

arriving early/late at synchronization point

Scalasca calculates a delay cost metric
• This metric highlights the root causes of

serialization

Cause of Low Serialisation Efficiency

Example 2

Methodology & Tools

• Code: C++, Fortran, MPI

• No access to the source code

Platform:

• Dual Intel Xeon Gold 6248 CPU @ 2.50GHz –

40 cores

• Intel Fortran and C++ compiler with MKL and

MPI Library (2019 version

Performance data collection: Extrae

• Scale: 2- 40 cores

Timeline of the program execution on 40 cores

Example 2

POP Metrics

Load imbalance &

increasing instruction count

are major factors that limit

the scalability

Number of cores 2 10 20 30 40

Global Efficiency 0.95 0.73 0.60 0.47 0.36

Parallel Efficiency 0.95 0.89 0.81 0.75 0.68

Load balance 0.95 0.92 0.85 0.81 0.80

Communication

Efficiency 0.99 0.97 0.95 0.92 0.85

Serialisation 1.00 0.99 0.99 0.98 0.94

Transfer efficiency 0.99 0.98 0.96 0.94 0.91

Computational Scaling 1.00 0.82 0.74 0.63 0.53

Instruction Scaling 1.00 0.87 0.83 0.79 0.76

IPC Scaling 1.00 0.99 0.95 0.90 0.83

Frequency Scaling 1.00 0.95 0.94 0.88 0.84

Example 2

Useful Instructions
Total number of useful instructions increases with

increasing number of processes

• Low Instruction scaling

Process 1 always executes more instructions
compared with other processes

• Load imbalance

With 40 processes, Processor 1 executes

46% more instructions with respect to average
number of instruction per process

• Amdahl's law

Example 3

A Computational Fluid Dynamics Code

POP metrics from the Performance Assessment

threads 1 10 30 45

Global Efficiency 1.00 0.80 0.36 0.26

⤷ Parallel Efficiency 1.00 0.86 0.60 0.55

⤷ OpenMP Region Efficiency 1.00 0.95 0.74 0.70

⤷ Serial Region Efficiency 1.00 0.91 0.86 0.85

⤷ Computational Scaling 1.00 0.94 0.60 0.48

⤷ Instruction Scaling 1.00 1.01 1.00 1.00

⤷ IPC Scaling 1.00 0.92 0.61 0.50

⤷ Frequency Scaling 1.00 1.00 0.98 0.95

Code: Fortran, OpenMP

Platform: MareNostrum-IV

Dual Intel Xeon Platinum 8160 Skylake 48-

core nodes

Scale: 1-45 threads

Tools: Extrae & Paraver, Vtune, MAQAO

Poor scalability of the code is due to

multiple factors:

• OpenMP Region Efficiency and reducing IPC

are major limiting factors,

• Resulting in, respectively, poor Parallel

Efficiency and poor Computational scaling

Example 3

Improving the Performance

Code refactoring by the POP Proof of Concept service

• Use of OpenMP COLLAPSE clause to improve load balance

• Move some calculations outside the loops & remove unnecessary calculations

• Use optimal loop ordering with nested loops

Original code for Proof of Concept

threads 1 2 10 18 30 45

Global Efficiency 1.00 0.86 0.65 0.41 0.31 0.15

⤷ Parallel Efficiency 1.00 0.97 0.80 0.69 0.62 0.59

⤷ OpenMP Region Efficiency 1.00 0.97 0.81 0.69 0.63 0.60

⤷ Serial Region Efficiency 1.00 1.00 0.99 0.99 0.99 0.99

⤷ Computational Scaling 1.00 0.89 0.81 0.60 0.49 0.26

⤷ Instruction Scaling 1.00 1.00 1.00 1.00 0.99 0.97

⤷ IPC Scaling 1.00 0.87 0.80 0.60 0.51 0.36

⤷ Frequency Scaling 1.00 1.02 1.02 1.00 0.97 0.74

Modified code

1 2 10 18 30 45

1.00 0.86 0.72 0.62 0.51 0.37

1.00 0.97 0.90 0.83 0.78 0.75

1.00 0.97 0.91 0.85 0.80 0.78

1.00 1.00 0.99 0.98 0.98 0.98

1.00 0.88 0.81 0.75 0.65 0.49

1.00 1.00 1.00 0.99 0.99 0.98

1.00 0.89 0.82 0.77 0.67 0.56

1.00 1.00 0.98 0.98 0.98 0.89

Example 3

Performance of modified code

The modified code

• is 1.6x faster on 1 thread due to reduced instruction count

• is 2.1x faster than original on 45 threads

• shows better parallel scaling with a speedup of 16.7 on 45 threads relative to 1 thread

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

Ti
m

e
(s)

threads

Run time

Original PoC code

Modified PoC code

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45
threads

Speedup

Original PoC code

Modified PoC code

success stories
More than 350 services since 2015 across all
domains, e.g. engineering, earth & atmospheric

sciences, physics, biology and genetics

https://pop-coe.eu/blog/tags/success-stories

https://pop-coe.eu/blog/tags/success-stories

Online Content

www.pop-coe.eu

POP Website

https://pop-coe.eu/services

All the information you need to access POP services

Blogs, More Learning Materials, Newsletter,

subscribe and see past issues

https://www.youtube.com/pophpc

Past Webinars | POPCasts

POP Online training

A series of self-study modules

For those with limited experience in

performance analysis of HPC applications

Learning Objectives

• The challenges involved in HPC performance
analysis

• How the POP Metrics aid understanding of
application performance

• How to calculate the POP Metrics for your own
HPC applications

• What POP tools are available and how they can

be installed

• How to capture and analyse performance data

with the POP tools

Summary

POP Performance Metrics
• Build a quantitative picture of application behavior

• Allow quick diagnosis of performance problems in parallel codes

• Identify strategic directions for code refactoring

• So far metrics for MPI, OpenMP and Hybrid (OpenMP + MPI) codes

POP works
• Across application domains, platforms, scales

• With (EU/UK) academic and industrial customers including code developers, code users,
HPC service providers and vendors

• To apply for a POP service go to https://pop-coe.eu/services

POP CoE
• Promotes best practices in parallel programming

• Encourages a systematic approach to performance optimization

• Facilitates and invests in training HPC experts

Performance Optimisation and Productivity

A Centre of Excellence in HP

Contact:

https://www.pop-coe.eu

pop@bsc.es

@POP_HPC

youtube.com/POPHPC

