Getting Insight into HPC Code Behaviour

Meet the POP CoE: Fouzhan Hosseini, NAG Ltd

Who is NAG?

Renowned in Numerical Algorithms & HPC

Over the last 50 years, brands such as AMD, Arm, Intel, and Nvidia have become reliant on NAG IP

Global SME

With hubs in Asia, Europe and the US, NAG can support clients in their own time zone

NAG provides

Solutions

- NAG Library & custom algorithm development
- Fortran compiler
- Algorithmic differentiation

Consultancy

- Cloud HPC migration
- HPC technology evaluation & benchmarking
- Code porting & optimisation

A Centre of Excellence in HPC

Performance Optimisation and Productivity

- Better Parallel Code
- Boost scalability of HPC Applications
 - Faster results, novel solutions, reduced expenditure
 - More efficient use of HPC infrastructures
 - In prep for Exascale computing

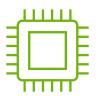
• A Team with

- Excellence in performance tools and tuning
- Excellence in programming models and practices
- R & D background in real academic and industrial use cases

IT4INNOVATIONS
V NATIONAL SUPERCOMPUTING
A CENTER

nag

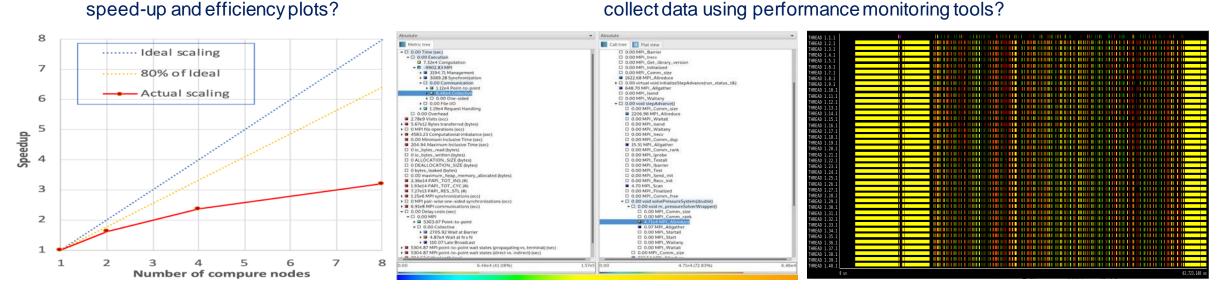
What & who for


Methodology & Tools

- Quantitative picture of application behavior
- Hierarchical set of Performance metrics
- Open-source tools that support highscale analysis

Communities

- All domains of science & technology
- SMEs or large industries
- Academia & Research institutes
- All other HPC CoEs
- HPC Centres


Services

- Performance assessment
- Code Optimization
- Transversal across all programing models, architectures & scale
- Education & training

Parallel performance is hard to understand

How do we measure the performance of our parallel programs?

Cube, perf. metrics per routines/call stack, data collected by Scalasca/Score-P Paraver, timeline view of program execution, data collected by Extrae

Tracing is powerful

But can generates overwhelming amount of data

Main Problem

Lack of quantitative understanding of the actual behavior of a parallel application

$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$	$\bullet \bullet \bullet$
• • • •	• • • • •	• • 💻 •	• • • •
• • •		•••	•••
		•• •	•• • •
	\succ		

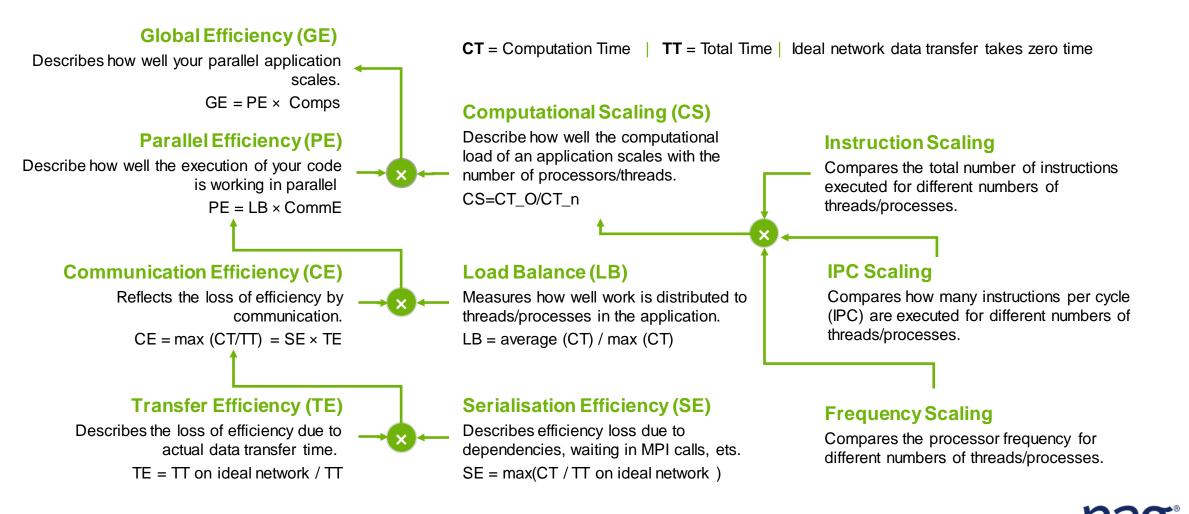
Difficult to know where to start and what to look for

The POP metrics:

A simple but powerful solution

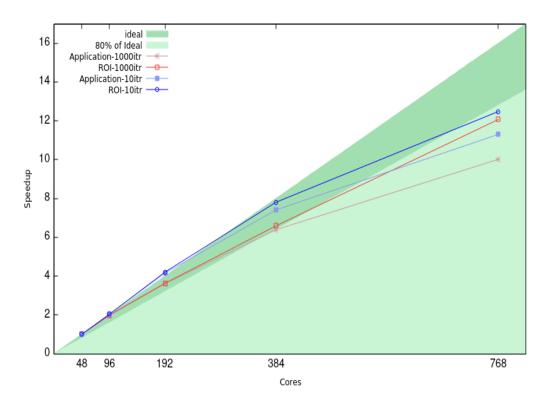
Devise a simple set of performance metrics...

- using values easily obtained from the trace data
- where low values indicate specific causes of poor parallel performance


These metrics then are used to understand...

- what are the causes of poor performance
- what to look for in the trace data

POP MPI Parallel Efficiency Metrics


POP performance monitoring tools

Developing open-source tools

- Extrae (tracing), Paraver (visualisation) & Dimemas <u>https://tools.bsc.es</u>
- Score-P (profiling and tracing), Scalasca (Post Processing) & Cube (visualisation) <u>https://tools.bsc.es/</u>
- MAQAO: synthetic reports and hints with a focus on core performance <u>http://www.maqao.org</u>
- PyPOP: automated generation of POP metrics from Extrae traces <u>https://github.com/numericalalgorithmsgroup/pypop</u>

For more help on how to use these tools and calculate the POP metrics see the POP website learning material & online training https://pop-coe.eu/further-information/learning-material and https://pop-coe.eu/further-information/online-training Other tools can also be used

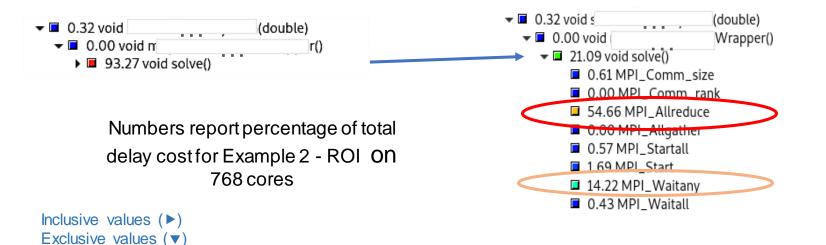
A Computational Fluid Dynamics Code

- Code: C++, MPI
- Platform: MareNostrum-IV
 - Dual Intel Xeon Platinum 8160 Skylake 48-core nodes
- Performance data collection:
 - Score-P/Scalasca using compiler instrumentation filter and hardware counters
- Scale: 48-768 cores (1-16 nodes)

POP Metrics

Number of cores	48	96	192	384	768
Global Efficiency	0.93	0.94	0.93	0.84	0.76
Parallel Efficiency	0.93	0.91	0.87	0.77	0.68
Load balance	0.99	0.98	0.98	0.97	0.95
Communication Efficiency	0.94	0.92	0.89	0.79	0.72
Serialisation	0.95	0.94	0.92	0.85	0.81
Transfer efficiency	0.99	0.99	0.97	0.94	0.89
Computational Scaling	1.00	1.03	1.07	1.09	1.12
Instruction Scaling	1.00	0.99	0.97	0.95	0.92
IPC Scaling	1.00	1.05	1.10	1.18	1.27
Frequency Scaling	1.00	1.00	1.00	0.98	0.96

We immediately see that Serialisation is the main factor that limits the scalability


Cause of Low Serialisation Efficiency

Serialisation

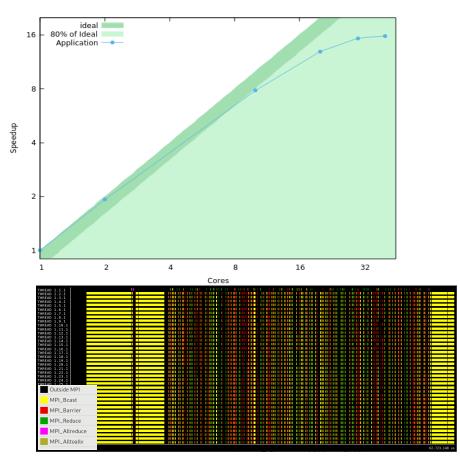
 typically happens due to at least one process arriving early/late at synchronization point

Scalasca calculates a delay cost metric

This metric highlights the root causes of serialization

The MPI collective calls and imbalanced computation regions within a Library call were the main causes of the serialisation on 768 cores

Methodology & Tools


- Code: C++, Fortran, MPI
- No access to the source code

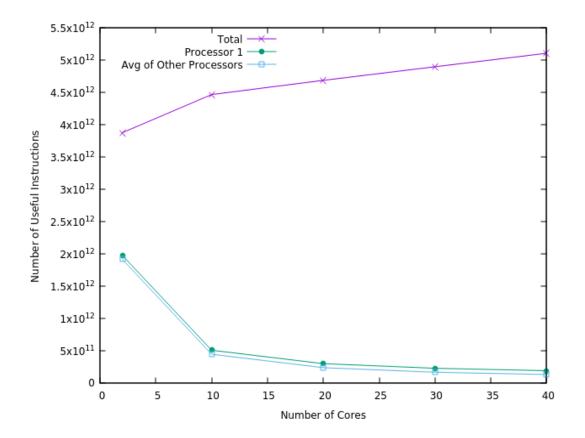
Platform:

- Dual Intel Xeon Gold 6248 CPU @ 2.50GHz 40 cores
- Intel Fortran and C++ compiler with MKL and MPI Library (2019 version

Performance data collection: Extrae

• Scale: 2- 40 cores

Timeline of the program execution on 40 cores


POP Metrics

Number of cores	2	10	20	30	40	
Global Efficiency	0.95	0.73	0.60	0.47	0.36	
Parallel Efficiency	0.95	0.89	0.81	0.75	0.68	4
Load balance	0.95	0.92	0.85	0.81	0.80	
Communication						
Efficiency	0.99	0.97	0.95	0.92	0.85	
Serialisation	1.00	0.99	0.99	0.98	0.94	
Transfer efficiency	0.99	0.98	0.96	0.94	0.91	
Computational Scaling	1.00	0.82	0.74	0.63	0.53	
Instruction Scaling	1.00	0.87	0.83	0.79	0.76)
IPC Scaling	1.00	0.99	0.95	0.90	0.83	
Frequency Scaling	1.00	0.95	0.94	0.88	0.84	

Load imbalance & increasing instruction count are major factors that limit the scalability

Useful Instructions

Total number of useful instructions increases with increasing number of processes

Low Instruction scaling

Process 1 always executes more instructions compared with other processes

Load imbalance

With 40 processes, Processor 1 executes 46% more instructions with respect to average number of instruction per process

• Amdahl's law

A Computational Fluid Dynamics Code

POP metrics from the *Performance Assessment*

# threads	1	10	30	45
Global Efficiency	1.00	0.80	0.36	0.26
Service Antician Service Anticipation Service Antic	1.00	0.86	0.60	0.55
└> OpenMP Region Efficiency	1.00	0.95	0.74	0.70
Serial Region Efficiency	1.00	0.91	0.86	0.85
Scaling	1.00	0.94	0.60	0.48
└→ Instruction Scaling	1.00	1.01	1.00	1.00
└ IPC Scaling	1.00	0.92	0.61	0.50
	1.00	1.00	0.98	0.95

Code: Fortran, OpenMP Platform: MareNostrum-IV

Dual Intel Xeon Platinum 8160 Skylake 48core nodes

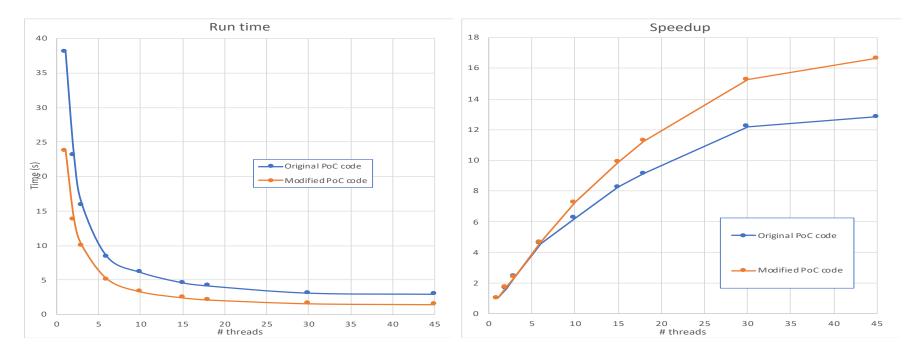
Scale: 1-45 threads

Tools: Extrae & Paraver, Vtune, MAQAO

Poor scalability of the code is due to multiple factors:

- OpenMP Region Efficiency and reducing IPC are major limiting factors,
- Resulting in, respectively, poor Parallel Efficiency and poor Computational scaling

Improving the Performance


	Original code for Proof of Concept				Modified code							
# threads	1	2	10	18	30	45	1	2	10	18	30	45
Global Efficiency	1.00	0.86	0.65	0.41	0.31	0.15	1.00	0.86	0.72	0.62	0.51	0.37
Service Antician Parallel Efficiency	1.00	0.97	0.80	0.69	0.62	0.59	1.00	0.97	0.90	0.83	0.78	0.75
GenMP Region Efficiency	1.00	0.97	0.81	0.69	0.63	0.60	1.00	0.97	0.91	0.85	0.80	0.78
Serial Region Efficiency	1.00	1.00	0.99	0.99	0.99	0.99	1.00	1.00	0.99	0.98	0.98	0.98
Generational Scaling	1.00	0.89	0.81	0.60	0.49	0.26	1.00	0.88	0.81	0.75	0.65	0.49
└ Instruction Scaling	1.00	1.00	1.00	1.00	0.99	0.97	1.00	1.00	1.00	0.99	0.99	0.98
└ IPC Scaling	1.00	0.87	0.80	0.60	0.51	0.36	1.00	0.89	0.82	0.77	0.67	0.56
	1.00	1.02	1.02	1.00	0.97	0.74	1.00	1.00	0.98	0.98	0.98	0.89

Code refactoring by the POP Proof of Concept service

- Use of OpenMP COLLAPSE clause to improve load balance
- Move some calculations outside the loops & remove unnecessary calculations
- Use optimal loop ordering with nested loops

Performance of modified code

The modified code

- is 1.6x faster on 1 thread due to reduced instruction count
- is 2.1x faster than original on 45 threads
- shows better parallel scaling with a speedup of 16.7 on 45 threads relative to 1 thread

Success Stories

POP Collaboration with PerMedCoE achieves a 1.45x Speedup in PhysiCell, one of PerMedCoE Core Applications A collaboration between POP and PerMedCoE started with the performance assessment of PhysiCell.

READ MORE

25 MAY WORK Run time halved for OpenMP code Having already identified the three causes of low efficiency in READ MORE

A one-day POP online training for SURF SURF SARA Jonathan Boyle and Federico Panichi from POP partner NAG

(Numerical Algorithms Group) recently pr

READ MORE

05

NOV

Diversifying the HPC community: boosting the uptake of advanced HPC training by women and underrepresented groups

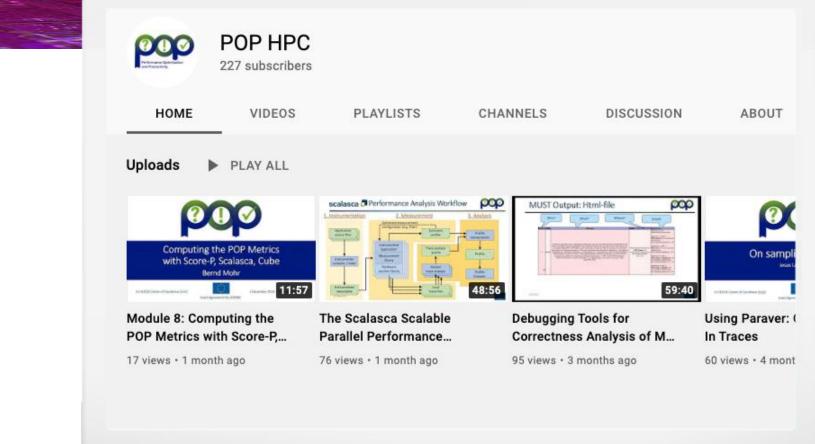
HPC training is a crucial step in encouraging and building a diverse and inclusive workforce for

READ MORE

02 FEB Performance Improvements by More Than 30% and a Data Race Fixed for CalculiX Code CalculiX is an open source computational fluid dynamics code.

588x and 488x Execution Time Speedups of a Volcanic Hazard Assessment Code The Probabilistic Volcanic Hazard Assessment Work Flow package (PVHA_WF) is a workflow created fo

success stories


More than 350 services since 2015 across all domains, e.g. engineering, earth & atmospheric sciences, physics, biology and genetics

https://pop-coe.eu/blog/tags/success-stories

READ MORE

Online Content

www.pop-coe.eu

POP Website

https://pop-coe.eu/services

All the information you need to access POP services Blogs, More Learning Materials, Newsletter, subscribe and see past issues

https://www.youtube.com/pophpc

Past Webinars | POPCasts

POP Online training

A series of self-study modules For those with limited experience in performance analysis of HPC applications

Learning Objectives

- The challenges involved in HPC performance analysis
- How the POP Metrics aid understanding of application performance
- How to calculate the POP Metrics for your own HPC applications
- What POP tools are available and how they can be installed
- How to capture and analyse performance data with the POP tools

		Logi
	Home / Further Information / Online T	
News	Online Training	
News	Online training	
Blog	This is the homepage for the POP online training course. The aim of this course is to give an overview of the POP	
Newsletter	performance analysis methodology and the POP analysis tools. These are the tools and techniques used by POP expe	rts
	when doing performance analyses and proof-of-concept work.	
Events		
Partners	Upon completing this course you will have an understanding of:	
Tools	The challenges involved in HPC performance analysis	
Tools	 How the POP Metrics aid understanding of application performance 	
Services	 How to calculate the POP Metrics for your own HPC applications 	
Request Service Form	What POP tools are available and how they can be installed	
Request service Form	 How to capture and analyse performance data with the POP tools 	
Resources for Co-Design	POP Online Training Modules	
Target Customers		
Success Stories	An Introduction to the POP Centre of Excellence	
	Understanding Application Performance with the POP Metrics	
Customer Code List		
Performance Reports		
Further Information		
Control Micrimotion	Installing POP Tools: Extrae, Paraver Using POP Tools: Extrae and Paraver	
Learning Material	• Using FOF TOOIS, Exclude and Paraver	
Webinars		
Outra Tablaisa	Installing POP Tools: Score-P, Scalasca, Cube	
Online Training	Score-P Using POP Tools: Score-P and Scalasca	
Contact	scalasca 🗗 🔹 Using POP Tools: Cube	
Privacy Policy	 Computing the POP Metrics with Score-P. Scalasca, Cube 	
Firedy Policy	• Computing the POP Metrics with PVPOP	

POP Performance Metrics

- Build a quantitative picture of application behavior
- Allow quick diagnosis of performance problems in parallel codes
- Identify strategic directions for code refactoring
- So far metrics for MPI, OpenMP and Hybrid (OpenMP + MPI) codes

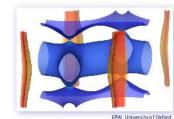
POP works

- Across application domains, platforms, scales
- With (EU/UK) academic and industrial customers including code developers, code users, HPC service providers and vendors
- To apply for a POP service go to https://pop-coe.eu/services

POP CoE

- Promotes best practices in parallel programming
- Encourages a systematic approach to performance optimization
- Facilitates and invests in training HPC experts

Performance Optimisation and Productivity



HPC Best Practices for Research and Education

Collaboration with POP to achieve academic excellence

 Performance optimisation for parallel research software, allowing better usage of universities' resources and creating capacity for solving more complex problems

 Learning materials and training workshops suitable for MSc level, Ph.D students and Postgraduate researchers.

POP achieved 10-fold scalability improvement for EPW (Electron-Phonon Coupling using Wannier inter polation), a materials science

University of Oxford. Important optimisations included: • Load imbalance issues were addressed by choosing a finer grain configuration

code developed by researchers at the

- Specialized routines were written for one part of the simulation to avoid unnecessary calculations
- Vector summation operations were optimised

 File I/O was optimised, bringing down seven being of file unlikes to undergo priority.

hours of file writing to under one minute.

Your parallel code: better

A Centre of Excellence in HP

Performance Optimisation and Productivity

Contact:

https://www.pop-coe.eu

youtube.com/POPHPC

