A i .‘*
“.‘ \.'\‘\.~

. -

Getting Insight into = = "= = -
HPC Code Behaviour SN
B = . . , .
.; o A ‘ E N
Ve ' \"‘ \\. < o

Meet the POP CoE:
Fouzhan Hosseini, NAG Ltd

Who iIs NAG?

Global SME

SN With hubsin Asia, Europe and
S/ the US, NAG can support clients
In their own time zone

Renowned in Numerical

Algorithms & HPC

Over the last 50 years, brands such as AMD,
Arm, Intel, and Nvidia have become reliant
on NAG IP

NAG provides

2

°* NAG Library & custom * Cloud HPC migration

algorithm development * HPC technology
° Fortran compiler N evaluation & benchmarking Oc}g{}o
* Algorithmic differentiation Q * Code porting & optimisation

nag

A Centre of Excellence in HPC

UNIVERSITE DE %“W

Performance Optimisation and Productivity VERSATLLES o

H L R Is

+ Better Parallel Code

@) JULICH | &iovmume
- Boost scalability of HPC Applications = moweeeew
o Faster results, novel solutions, reduced expenditure | WA
o More efficient use of HPC infrastructures
o In prep for Exascale computing [1[] UNIVERSITY | NATIONAL SuPERCOMPUTING
| OF OSTRAVA CENTER
« A Team with
Teratec .

o Excellence in performance tools and tuning

o Excellence in programming models and practices (Barcelona
Supercomputing
o R & D background in real academic and industrial use cases (

Center
al de Supercomputacion

nag

What & who for

O 111111
O~0 = =
[Y O™ 3| _|E
o, ° 5 JLF
<« TTTT1
Methodology & Tools Communities Services
+ Quantitative picture of « All domains of science & + Performance assessment
application behavior technology - Code Optimization

» Hierarchical set of » SMEs or large industries .
Performance metrics .

Transversal across all

« Open-source tools
that support high-
scale analysis

00U

Academia & Research
institutes

All other HPC CoEs
HPC Centres

programing models,
architectures & scale

Education & training

nag

—
— — ——— ——

Parallel performance is hard to understand =~

P

How do we measure the performance of our parallel programs?

—e
L J
speed-up and efficiency plots? collectdata using performance monitoring tools?
- g
--------- Ideal scaling
7

80% of Ideal

—e— Actual scaling

Speedup

1 2 3 a 5 6 7 8 po
Number of compure nodes

Cube, perf. metrics perroutines/call stack, Paraver, timeline view of program
data collected by Scalasca/Score-P execution, data collected by Extrae

000 nag®

Tracing Is powerful - e R
— — = ~ = -

But can generates overwhelming amount of data

Main Problem

Lack of quantitative

understanding of the actual Difficult to know where to start
behavior of a parallel application and what to look for

The POP metrics:

A simple but powerful solution

Devise a simple set of performance metrics... —

° using values easily obtained from the trace data
* where low values indicate specific causes of poor parallel performance

These metrics then are used to understand... .

° what are the causes of poor performance
* what to look for in the trace data

000 Nnag

POP MPI Parallel Efﬁciéncy Metric

Global Efficiency (GE)

Describes how well your parallel application
scales.

GE =PE x Comps

CT = Computation Time | TT = Total Time | Ideal network data transfer takes zero time

Computational Scaling (CS)

Parallel Efficiency (PE) Describe how well the computational Instruction Scaling

, , load of an application scales with the : ,
Describe how well the execution of your code PP Compares the total number of instructions

) . number of processors/threads. — ,
is working in parallel B executed for different numbers of
PE = LB x CommE CS=CT_O/ICT_n l threads/processes.
l ' :
0- |
Communication Efficiency (CE) Load Balance (LB) IPC Scaling
Reflects the loss of efficiency by <« Measures how well work is distributed to Compares how many instructions per cycle
communication. threads/processes in the application. (IPC) are executed for different numbers of
CE =max (CT/TT) = SEx TE LB = average (CT) / max (CT) threads/processes.

Transfer Efficiency (TE) Serialisation Efficiency (SE) Frequency Scaling
Describes the loss of efficiency due to) Describes efficiency loss due to Compares the processor frequency for
actual data transfer time. dependencies, waiting in MPI calls, ets. different numbers of threads/processes
TE =TT on ideal network / TT SE = max(CT /TT on ideal network)

For more details visit https://pop-coe.eu

nag

https://pop-coe.eu/

———
—

POP performance monitoring tools =

» Developing open-source tools

o Extrae (tracing), Paraver (visualisation) & Dimemas
https://tools.bsc.es

o Score-P (profiling and tracing), Scalasca (Post Processing) & Cube (visualisation) https://tools.bsc.es/

o MAQAQO: synthetic reports and hints with a focus on core performance http://www.magao.org

o PyPOP: automated generation of POP metrics from Extrae traces
https://github.com/numericalalgorithmsgroup/pypop

For more help on how to use these tools and calculate the POP metrics
see the POP website learning material & online training
https://pop-coe.eulfurther-information/learning-material and https://pop-coe.eu/further-information/online-training

Other tools can also be used

nag

https://tools.bsc.es/
https://tools.bsc.es/
http://www.maqao.org/
https://github.com/numericalalgorithmsgroup/pypop
https://pop-coe.eu/further-information/learning-material
https://pop-coe.eu/further-information/online-training

Speedup

Example 1

A Computational Fluid Dynamics Code

6l Y deal ' ']
gt ol Code: C++, MPI
ROI-1000itr —&

14 L Application-10itr —#
ROI-10itr —&—

Platform: MareNostrum-IV

121

10+

o Dual Intel Xeon Platinum 8160 Skylake 48-core nodes

Performance data collection:

o Score-P/Scalasca using compiler instrumentation filter
and hardware counters

Scale: 48-768 cores (1-16 nodes)

48 96 192 384 768

Cores

nag

Example 1

POP Metrics

Number of cores

Global Efficiency

Parallel Efficiency

Load balance

Communication Efficiency

Serialisation

Transfer efficiency

Computational Scaling

Instruction Scaling

IPC Scaling

Frequency Scaling

We immediately see that
Serialisation is the main

factor that limits the
scalability

nag

Example 1

Cause of Low Serialisation Efficiency

Serialisation Scalasca calculates a delay cost metric
- typically happens due to at least one process - This metric highlights the root causes of
arriving early/late at synchronization point serialization
-~ @ 0.32v0i (double >0 0.32v0id51 R (double)
TR ooowin ool e
" [9327 vold solve(0.61 MPI_Comm_size The MPI collective calls and

0.00 MPL Camm rank

qi.mﬁ MPLAlleduce > imbalanced computation

Numbers report percentage of total " ;;; r:.:'._;m_,ml.llc. regions within a Library call
m 0. _Start .
delay costfor Example 2 - ROl ON ML <t were the main causes of the
768 cores = 1422 MPI_Waitany serialisation on 768 cores

0.43 MPI_Wiaitall
Inclusive values (»)

Exclusive values ()

nag

Example 2

T
ideal

Methodology & Tools o] s ride
+ Code: C++, Fortran, MPI
» No access to the source code

Speedup

Platform:

* Dual Intel Xeon Gold 6248 CPU @ 2.50GHz —
40 cores

* Intel Fortran and C++ compiler with MKL and ' :
MPI Library (2019 version

Performance data collection: Extrae
« Scale: 2- 40 cores .EEIS:IEE:?Z,

Timeline of the program execution on 40 cores

nag

Example 2

POP Metrics

Number of cores 2 10 20 30 40
Global Efficiency 0.95 | 0.73 | 0.60 | 0.47 | 0.36
Parallel Efficiency 0.95 [0.89 | 0.81 | 0.75 | 0.68
Load balance 0.95 [0.92 | 0.85] 0.81 | 0.80

Communication
Efficiency 0.92 | 0.85
Serialisation 0.98 | 0.94
Transfer efficiency 0.94 | 0.91
Computational Scaling 0.63 | 0.53
Instruction Scaling 0.79 | 0.76
IPC Scaling 0.90 | 0.83
Frequency Scaling 0.88 | 0.84

Load imbalance &
Increasing instruction count
are major factors that limit
the scalability

nag

Example 2

Useful Instructions
Total number of useful instructions increases with

iIncreasing number of processes

5.5!1012 T T T T T T T
Total —+—

SK10 by of Other precesore - Low Instruction scaling
4,5x1012 | .
g BOEF 1 Process 1 always executes more instructions
g sty . compared with other processes
= ' - Load imbalance
S 2.5x1012 .
N ' With 40 processes, Processor 1 executes
L5x10% | \\ ! 46% more instructions with respect to average
1x10%2 - ‘\\ 1 number of instruction per process
5x10% | \‘.—.—.—.—.—.—.—__-_-_.—.—_—_—___._________._ o) ¢ Amd ahIIS Ia.W
00 I5]ID 1I5 2ID 2IE| 3ICI ;5 40

Number of Cores

nag

Example 3

A Computational Fluid Dynamics Code

POP metrics from the Performance Assessment
threads

Global Efficiency
L Parallel Efficiency

L OpenMP Region Efficiency

L Serial Region Efficiency

L Computational Scaling

L |nstruction Scaling
L |PC Scaling
L Frequency Scaling

Code: Fortran, OpenMP
Platform: MareNostrum-1V

Dual Intel Xeon Platinum 8160 Skylake 48-
core nodes

Scale: 1-45 threads
Tools: Extrae & Paraver, Vtune, MAQAO

Poor scalability of the code is due to
multiple factors:

* OpenMP Region Efficiency and reducing IPC
are major limiting factors,

* Resulting in, respectively, poor Parallel
Efficiency and poor Computational scaling

nag

Example 3

Improving the Performance

Original code for Proof of Concept

Modified code

1 2

0.86

10 18 30
0.65 (041 | 0.31

0.80 | 0.69 | 0.62 | 0.59

081 0691063 0560]
089 | .81 0.60 | 0.49 |

| 0.87 | 0.80 | 0.60 | 0.51 | 0.36 ||

0.74

threads 45

Global Efficiency

L Parallel Efficienc
L OpenMP Reaqion Efficienc

L Serial Region Efficiency

L Computational Scaling

L Instruction Scaling

L IPC Scaling

L Frequency Scaling

Code refactoring by the POP Proof of Concept service
* Use of OpenMP COLLAPSE clause to improve load balance

2 |10 (18 | 30 | 45
0.86/0.72(0.62[0.51[0.37

0.90/0.83/0.78/0.75

0.65 0.49Ar>

0.89

* Move some calculations outside the loops & remove unnecessary calculations

« Use optimal loop ordering with nested loops

nag

Example 3

Performance of modified code

Run time Speedup
40 18

16
35

14

12

10
e Original POC code

=
_go ——®— Modified PoC code
i=

—@®— Original PoC code

=t Modified PoC code

25 30 35 40 45

5 30 35 40 45 (o] 5 10 15 20
threads

20 2
threads

The modified code
* s 1.6x faster on 1 thread due to reduced instruction count

* is 2.1x faster than original on 45 threads nag®

» shows better parallel scaling with a speedup of 16.7 on 45 threads relative to 1 thread

Success Stories

13 POP Collaboration with PerMedCoE achieves a 1.45x
JUuL Speedup in PhysiCell, one of PerMedCoE Core Applications
A collaboration between POP and PerMedCoE started with the
performance assessment of PhysiCell.
READ MORE
25 B Run time halved for OpenMP code
MAY " Having already identified the three causes of low efficiency in
success v READ MORE
17 A one-day POP online training for SURF

MAY @ARA Jonathan Boyle and Federico Panichi from POP partner NAG
(Numerical Algorithms Group) recently pr

READ MORE

21 Diversifying the HPC community: boosting the uptake of
APR m advanced HPC training by women and underrepresented
\\/-|D(8groups

HPC training is a crucial step in encouraging and building a
diverse and inclusive workforce for

READ MORE

23 POP for Astronomy - 40% Reduction in Execution Time for
FEB Piernik the PIERNIK Code
PIERNIK is a parallel astrophysical fluid simulati

READ MORE

02 N Performance Improvements by More Than 30% and a Data

»

FEB = Race Fixed for CalculiX Code
l I CalculiX is an open source computational fluid dynamics code.

READ MORE
05 588x and 488x Execution Time Speedups of a Volcanic
NOV - Hazard Assessment Code

The Probabilistic Volcanic Hazard Assessment Work Flow
ChEESE package (PVHA_WF) is a workflow created fo

READ MORE

A6

success stories

More than 350 services since 2015 across all
domains, e.g. engineering, earth & atmospheric
sciences, physics, biology and genetics

https://pop-coe.eu/blog/tags/success-stories

Nnag

https://pop-coe.eu/blog/tags/success-stories

Online Content

POP HPC

227 subscribers

HOME VIDEOS PLAYLISTS CHANNELS DISCUSSION ABOUT
WWW.pOop-coe.eu

POP Website Uploads p PLAY ALL

scalasca 3 Performance Analysis Workflow m MUST Cutput: Html-file

https://pop-coe.eu/services

All the information you need to access POP services
Blogs, More Learning Materials, Newsletter,
subscribe and see pastissues

Module 8: Computing the The Scalasca Scalable Debugging Tools for Using Paraver: (
POP Metrics with Score-P... Parallel Performance... Correctness Analysis of M... In Traces
17 views * 1 month ago 76 views * 1 month ago 95 views * 3 months ago 60 views * 4 mont

https://www.youtube.com/pophpc

Past Webinars | POPCasts

009

Nnag

Performance Optimisation and Productivity

A Centre of Excellence in HPC

Login

A series of self-study modules
For those with limited experience in i Online Training

Bleg
This is the homepage for the POP online training course. The aim of this course is to give an overview of the POP

pe rformance anal ys| s of HPC app lications e performance analysis methodology and the POP analyis tols. These are the ool and techniques used by POP experts

when doing performance analyses and proof-of-concept work.

Home / Further Information / Online Training

Events
Upon completing this course you will have an understanding of:
Partners

Learning Objectives —

« How the POP Metrics aid understanding of application performance
Services * How to calculate the POP Metrics for your own HPC applications
* What POP tools are available and how they can be installed

° T he C hal | e ng eS invo Ive d in H P C p e rfo rm ance Request Service Form « How to capture and analyse performance data with the POP tools

Besotncas forCo-DRsign POP Online Training Modules

an a.lys IS Target Customers

* How the POP Metrics aid understanding of et POP . fiecaancios csction pecormance it th pce et
application performance

* How to calculate the POP Metrics for your own
HPC applications

Performance Reports

— « Installing POP Tools: Extrae, Paraver

* Using POP Tools: Extrae and Paraver
Learning Material -- 8

Webinars

* What POP tools are available and how they can 'J i»scom: : Mj?ém, Tm‘;f.cy;;;,bm.; o
1 Contact scalasca ™ * Using POP Tools: Cube
be installed R + Computing the POP Metrics with Score-P. Scalasca, Cube
nao « Comnuting the POP Metrics with PvPOP

* How to capture and analyse performance data
with the POP tools A —

Summary | = = 900

HPC
Best Practices
for Research
and Education

POP Performance Metrics

* Build a quantitative picture of application behavior

* Allow quick diagnosis of performance problemsin parallel codes
* |dentify strategic directions for code refactoring

* So far metrics for MPI, OpenMP and Hybrid (OpenMP + MPI) codes SPRURSRERV. PN S,

to achieve academic
excellence

« Performance optimisation for parallel

P O P W O r k S research software, allowing better usage of

universities’ resources and creating capacity
for solving more complex problems

* Across applicationdomains, platforms, scales WL AN ———
- suitable for MSc level, Ph.D students and POP achieved 10-fold scalability improvement
* With (EU/UK) academic and industrial customers including code developers, code users, Posiradests sssarchar. Vit sty St g

code developed by researchers at the
University of Oxford. Important optimisations
included:

HPC service providers and vendors
* To apply fora POP service go to https://pop-coe.eu/services

| + Loadimbalance issues were addressed by
| choosing a finer grain configuration
« Specialized routines were written for one
partof the simulation to avoid unnecessary
cakulations
« Vector summation o perations were
optimised

* Filel/Owas optimised, bringing down seven

POP CoE
hours of file writing to underone minute.
* Promotes bestpractices in parallel programming Your parallel code: better

* Encourages a systematic approach to performance optimization
* Facilitates and invests in training HPC experts

EPW, Universityof Oford

nag

A Centre of Excellence in HP

Performance Optimisation and Productivity

Contact:

https://www.pop-coe.eu

<] pop@bsc.es

D @POP_HPC

n youtube.com/POPHPC

