
Darshan Hands-on Tutorial

Building Darshan

Darshan is an open-source tool and can be downloaded from:

ftp://ftp.mcs.anl.gov/pub/darshan/releases/darshan-3.1.5.tar.gz

To build Darshan from source, you will need to use the same MPI implementation used to build your

application code. In addition, Darshan requires LaTeX for creating a report.

1. tar -zxvf darshan-3.1.5.tar.gz

2. cd darshan-3.1.5/darshan-runtime

3. ./configure --with-mem-align=8 --with-log-path-by-env=DARSHAN_LOGPATH

--with-jobid-env=NONE CC=mpicc --prefix=/usr/local/darshan-3.1.5-ompi

The --prefix flag is where you would like to install the Darshan tool;

4. make

5. make install

Then build the Darshan command line utilities:

6. cd darshan-3.1.5/darshan-util

7. ./configure --prefix=/usr/local/darshan-3.1.5-ompi

8. The above prefix directory should be the same used in command 3 above;

9. make

10. make install

Profiling an application with Darshan

The easiest way to profile an application with Darshan is to build a dynamic executable, namely an
executable that is dynamically linked with the MPI library. To determine if your executable is
dynamic or not, type:

ldd bin/bt.A.4

[...]

libmpi.so.1 => /usr/lib64/openmpi/lib/libmpi.so.1

[...]

If the output shows the MPI library, then it is dynamically linked. To profile your code, set the
Darshan log path variable and simply prefix the MPI execution command with the Darshan library as
shown:

export DARSHAN_LOGPATH=.

LD_PRELOAD=/usr/local/darshan-3.1.5-ompi/lib/libdarshan.so mpirun -n 9 \

../bt.A.9.mpi_io_full

The above command will create a trace file in the current working directory. The trace file name
should start with the user name and end with the text “darshan”.

ftp://ftp.mcs.anl.gov/pub/darshan/releases/darshan-3.1.5.tar.gz

Darshan Profiling Report

To create a PDF report of the profile, type:

darshan-job-summary.pl <trace file>.darshan

The PDF report will have the same name as the trace file but with the “pdf” extension. Use any PDF
viewer to view the report.

Obtaining and Installing NPB

The NAS parallel benchmark can be used to learn more about the Darshan tool. The benchmark can
be downloaded from:

https://www.nas.nasa.gov/assets/npb/NPB3.3.1.tar.gz

Then follow these instructions to build the I/O benchmark:

1. tar -zxvf NPB3.3.1.tar.gz

2. cd NPB3.3.1/NPB3.3-MPI

3. cp config/make.def.template config/make.def

4. Set the following make variables in config/make.def:
a. MPIF77 = mpif90 # or the MPI Fortran wrapper
b. FFLAGS = -O2 -g

5. make bt NPROCS=9 CLASS=A SUBTYPE=full

6. This will create the executable in bin/bt.A.9.mpi_io_full

Profiling NPB with Darshan

To profile the NPB benchmark, type the following command:

export DARSHAN_LOGPATH=.

LD_PRELOAD=/usr/local/darshan-3.1.5-ompi/lib/libdarshan.so mpirun -n 9 \

bin/bt.A.9.mpi_io_full

The above command will create a trace file in the current working directory. The trace file name
should start with the user name and end with the text “darshan”.

To create a PDF report of the profile, type:

darshan-job-summary.pl <trace file>.darshan

https://www.nas.nasa.gov/assets/npb/NPB3.3.1.tar.gz

Interpreting the Darshan Report

The Darshan report contains a number of sections each outlining the I/O characteristics of an
application run. At the very top of the report, it shows how much data was transferred and what the
bandwidth was. The bandwidth data could be used to determine the I/O scalability of the application
at different MPI process counts to determine if I/O is scaling linearly. An example output of this
section is shown below:

The bar chart below shows, as a percentage of runtime, how much I/O contributed to the runtime.

From this chart, one can determine if
I/O is a performance issue or not. In this
example, over 40% of the application
runtime is being spent in I/O, so the I/O
of this code can be addressed. It also
shows the contribution to the runtime in
read, write, metadata operations as well
how much time in everything else,
namely “other”. The “other” category
includes time in computation and
communication. Note that parallel
NetCDF and parallel HDF5 are labelled as
MPI-IO.

The next graph shows the I/O operation counts. Ideally, the operation counts should be small as
possible as a large number could indicate a performance issue.

The operation counts are summed across
all MPI processes. In this example, there
are a large number of read/write
operations. However, they are MPI-IO
collective operations which are more
optimal than independent MPI-IO
operations. A large number of seek
operations could also indicate
performance issues as this operation is
expensive.

The bar charts below show the read/write access sizes for both POSIX and MPI-IO. Small access sizes
could indicate performance issues. Ideally, the number of I/O operations should be low with large
access sizes. In this example, the access sizes are sufficiently large for both POSIX and MPI-IO.

The table on the below left gives a breakdown of the access sizes, and the table on the right shows
the file count summary. Ideally, the file operation counts should be low, particularly the write-only
files. This is because meta-data creation time is expensive.

The next graph shows the I/O timeline which can be aggregated or shown individually for each MPI
process. To obtain the I/O timeline for individual MPI processes, set the following environment
variable prior to the application execution:

export DARSHAN_DISABLE_SHARED_REDUCTION=1

An example I/O timeline for each MPI process is shown below, and from this timeline, any load
imbalances can be observed.

An example of an aggregate I/O timeline is shown below which is the default view for Darshan.

The next table shows which file systems were accessed during the application run.

This is particularly useful to determine if the application run was using the correct file system, e.g. a
high performance file system and not NFS which is not designed for parallel I/O.

The next graph shows the POSIX I/O pattern.

Consecutive I/O means contiguous I/O which is
optimal. Sequential I/O means non-contiguous.

The last table shows the variance of POSIX I/O data across the MPI processes and can be used to
determine if there are any load imbalances across the MPI processes.

In this example, this shows that process number 8 has transferred 0 bytes, whereas process number
0 has transferred 240 MB. There is clearly a load imbalance in this example and needs to be
addressed.

