
Promoting Efficiency in European HPC
Sally Bridgwater, Mike Dewar, Nick Dingle, Numerical Algorithms Group Ltd, Oxford, UK
Judit Gimenez, Jesus Labarta, Claudia Rosas, Barcelona Supercomputing Center, Spain
Aamer Shah, RWTH Aachen, Germany

Aims of POP
The Performance Optimisation and Productivity Centre
of Excellence in Computing Applications (POP) provides
independent performance assessments of academic
and industrial HPC codes.

POP enables code owners to improve the efficiency of
their codes and thus make better use of HPC resources
and analyse larger or more detailed problems.

How to Apply
The POP website https://pop-coe.eu provides
details of the services available and how to apply.

The service is free to organisations based in the EU.

Case Study: Quantum Espresso
Quantum Espresso is an integrated suite of Open
Source codes for nanoscale electronic structure
calculations and materials modelling.

POP investigated the effectiveness of its hybrid
MPI+OpenMP architecture and found that for a
significant portion of time only one OpenMP thread
per MPI process was doing useful computation.

This explains the observation that running with five
OpenMP threads was less than twice as fast as running
with one. Refactoring the code to better exploit all
OpenMP threads would improve its scalability.

This work was done in collaboration with the Materials
design At the eXascale (MaX) CoE.

Case Study: DROPS
DROPS is a tool for simulating two-phase flows.
POP identified a computational load imbalance in the
matrix setup stage that increased waiting times in MPI
collective operations.

This is visualized in the above heat maps: the left
shows the computation time in seconds per MPI rank,
the right the idle time.

POP identified the cause of this load imbalance and,
as it severely affected the performance of the code,
recommended that it should be a priority to rectify it.

Case Study: DPM
Discrete Particle Method (DPM) is a numerical
simulation tool for studying the motion and chemical
conversion of particulate material in furnaces.

POP identified issues with end-point contention due
to sending MPI messages in increasing-rank order.

This contention prevented the code from scaling
beyond 20 cores. It can be avoided if different MPI
ranks send their messages in different orders.


