

D4.2 First-year report on Analysis
Version 1.0

Document Information

Contract Number 676553

Project Website www.pop-coe.eu

Contractual Deadline M12, September 2016

Dissemination Level Public

Nature Report

Author Judit Gimenez (BSC)

Contributor(s)

Reviewer Christian Terboven (RWTH-Aachen)

Keywords performance assessments, first-year report, analysis
and recommendations

Notices:
The research leading to these results has received funding from the
European Union’s Horizon 2020 research and innovation programme under
grant agreement No “676553”.

 2015 POP Consortium Partners. All rights reserved.

D4.1 Analysis Processes
Version 1.0

 2

Change Log

Version Author Description of Change

V0.1 J. Gimenez Initial Draft

V0.2 C. Terboven Minor corrections and additions

V0.3 J. Gimenez Improvements as suggested by internal
review + update statistics and figures

V1.0 J. Gimenez Final version

D4.1 Analysis Processes
Version 1.0

 3

Table of Contents
Table of Contents3

Executive Summary.................................. ..4

1. Introduction4

2. Performance Audits5

2.1 Evolution and status ..5

2.2 Performance Audit characterization ..7

2.2.1 Performance service ...7

2.2.2 Code ...8

2.2.3 User ... 11

2.3 Performance Audit results analysis .. 13

3. Performance Plans 16

3.1 Ateles Performance plan (HLRS) ... 16

3.2 OpenNN Performance plan (BSC) ... 18

3.3 ICON Performance plan (BSC) .. 19

3.4 SHEMAT Performance plan (RTWH Aachen) .. 20

3.5 GS2 Performance plan (NAG) .. 21

3.6 EPW Performance plan (JSC) .. 22

4. Recommendations for tools developers 24

5. Annex I: Table of services 25

5.1 Performance Audits .. 25

5.2 Performance Plans ... 26

6. Annex II: WP4 Reports 27

Acronyms and Abbreviations 363

D4.1 Analysis Processes
Version 1.0

 4

Executive Summary

This deliverable reports on the services provided by the Analysis Work
Package (WP4) during the first year of the POP project. The analysis Work
Package is the framework for two of the main services provided by the POP
Centre of Excellence: the Performance Audits and the Performance Plans.

The deliverable describes and characterizes the cases analysed during the
first year of the project, summarizing the findings and recommendations
provided to the customers. It also includes the first recommendations for tool
developers based on customer feedback. The annexes of the deliverable
include a list of the services provided and the reports produced in this period.

1. Introduction

This deliverable describes and characterizes the Performance Audit and the
Performance Plan services carried out by the POP project partners during the
first year of the project. The services are available free-of-charge to
developers and users of parallel codes with the objective of providing useful
insight regarding the behaviour of their applications.

As of 23 September 2016 (at the time of closing this deliverable), we have 63
requests for WP4 services: 53 Performance Audits and 6 Performance Plans.
Four requests were cancelled because the user did not reply to our mails for
an extended period of time or because he/she moved to a different institution
or company. We have 35 services in process or currently being
communicated to the customer. As we will discuss in detail below, the
progress of the WP4 services is generally on schedule based on the project
plan. As annex of this deliverable we include the list of assessments for the
first year.

We have implemented the operational procedures described in D4.1 to
manage the WP4 services as planned and experience dictates that they are
working well. Moreover, we are using TRAC to store and check the status of
the requests.

Our overall objective is to provide high quality POP services to all users at all
institutions. Part of how we determine the quality of the service provided is
based on a comparison of the final audit report results. At the beginning of
the project, we used a high level template defined in D4.1 to produce these
reports; however, in reviewing the initial audit reports, we found that there was
too much variation in the measuring of metrics and the level of detail reported.
For this reason, we took a step back and reviewed the audit report template
together in order to come up with a more uniform approach which we believe
has subsequently improved our overall service.

D4.1 Analysis Processes
Version 1.0

 5

2. Performance Audits

The Performance Audit is the primary service and may be considered a kind
of health check for the codes. Codes are diagnosed based on a set of well-
defined efficiency metrics and the efficiency achieved on different aspects
(e.g. parallelization, load balance, IPC, data transfer) against which we
recommend areas for improvement. Although we always cover a minimum set
of common analyses in every Performance Audit, we can also tailor the Audit
according to customer needs and / or topics of interest such as serial code
performance, scalability, or communications.

We provide two complementary views in this deliverable: first, the evolution of
the requests and their status during the first twelve months of the project, and
second, a characterization of the codes and users we have been working with
as well as the results obtained.

2.1 Evolution and status

The POP DoA targets the completion of 42 assessments in the first year with
a planned distribution of 3 new studies for the first 6 months and 4 new
studies for the second 6 months.

Figure 1 plots the evolution of the POP assessments during the reporting
period. Comparing the studies with respect to the plan, we can see that since
January 2016, the total number of studies is significantly higher than the
planned value.

Figure 1: POP assessments evolution w.r.t plan

D4.1 Analysis Processes
Version 1.0

 6

On the other hand, the number of assessment closed is significantly lower for
the full period. The reason is that most of the studies require more time than
initially planned. This is because of delays in most of the cases caused by the
user. We have found that these delays are much more probable during the
initial phase of the study (due to delays in providing sources or traces, in
signing NDAs or in selecting the input cases). We realized this early on in
the project and noted it in the deliverable D4.1. For this reason, we think that
the executed assessments, including both closed and in progress studies,
serve as a much better indicator of progress. We can see that in the plot the
executed metric is close to the planned value and even a little bit higher for
the last months.

At the time of writing this deliverable, the current distribution of the 59
assessments is as follows: 30 closed, 5 being reported to the user, 11
instrumenting the code and analysing the data and 13 are new requests or still
awaiting some input from the user. The milestone for the end of September is
to have 42 assessments completed. As of today we consider 35 services
either closed or currently being reported to the user. We expect to complete
more than half of the 11 remaining on-going services in the coming weeks,
which will bring us quite close to our original target.

Figure 2 plots the assessments distribution per partner for each of the states.
As not all the partners have the same effort and budget, we agreed on a
weighted value for the total number of studies per partner. The plotted line is
an estimator of the planned value per partner for project month 12 considering
the resources assigned in WP4.

Figure 2: POP assessments per partner (plotted line represents an estimator of the

planned value for month 12)

D4.1 Analysis Processes
Version 1.0

 7

We can see that for most of the partners the sum of closed and reporting
cases is close to the planned value, with the exception of TERATEC. CNRS, a
third party from TERATEC required a formal third-party agreement between
CNRS and TERATEC before they could hire an engineer to perform the
assessments. The agreement was signed on 20 May, but was only able to
complete a hire on 1 October, 2016.

This delay had minimal impact on the overall project. The rest of the
consortium has assumed all the services requested, and there was no delay
introduced in any service due to the fact one of the partners was not able to
contribute during the first year.

2.2 Performance Audit characterization

This section characterizes the audit requests with respect to the performance
service required, the profile of the user (e.g.. country, sector) and the profile of
the code (such as the programing model and language used). This
characterization is applied to the 53 audits as this information is mostly
collected on the request service form.

2.2.1 Performance service

The web form to request an audit offers the alternative to select a focus for the
Performance Audit. Figure 3 characterizes the requests received with respect
to the main focus selected by the user. We can see that almost half of the
requests selected the basic performance check and close to a 25% asked for
us to identify areas of improvement. Scalability is identified as the main
concern, followed by parallel efficiency and serial performance. None of the
request selected the communications option (that may be considered part of
scalability or parallel efficiency).

Figure 3: Performance service requested

D4.1 Analysis Processes
Version 1.0

 8

2.2.2 Code

In Figure 4 we see the distribution of the requests with respect to the
scientific/technical area of the code as specified by the user. Engineering,
Physics, Earth/Atmospheric and Chemistry are the most dominating areas
covering 80% of the requests. There are fewer requests from the relatively
new fields in the HPC sector like medical and data analytics.

Figure 4: Code scientific/technical area

Figure 5 characterizes the audits with respect to the parallel programing
model. The label MPI(+OpenMP) has been used to specify codes that are
MPI+OpenMP where we only analysed the pure MPI executions (requested
by the user). As expected, the codes are dominated by MPI followed by
OpenMP. In total, 49 of the 53 requests use MPI, OpenMP or mixed
MPI+OpenMP.

D4.1 Analysis Processes
Version 1.0

 9

Figure 5: Parallel programming model

There are also no surprises with respect to the most dominating programming
languages (see Figure 6). Fortran, C++ and mixed C and Fortran represent
79% of the codes. Pure Fortran or Fortran mixed with other languages is used
in 34 of the 53 codes. Only Python-related requests are higher than expected
(Python contributes in 5 of the codes).

Figure 6: Programming language

Figure 7 correlates the programming language with respect to the code
sectors. In this plot we eliminated both programming languages and sectors
with just one occurrence.

D4.1 Analysis Processes
Version 1.0

 10

Figure 7 Programing language used on the main code sectors

We can see that Fortran dominates in the traditional sectors of engineering,
physics, chemistry and earth/atmospheric applications. Pure C++ codes
appear in material science, physics, chemistry and engineering but with only a
few representative cases per area. We currently believe that the sample size
is too small to be able to extract real observations and that we may need to
wait until the end of the second year or even the end of the POP project in
order to be able to draw real conclusions.
In a similar way, Figure 8 correlates the parallel programing model to each of
the previously mentioned application sectors. We can see that for the
engineering codes the most frequent paradigm is MPI+OpenMP while in
Chemistry we see more frequent use of pure MPI codes. Pure OpenMP is
rarely used when looking across these sectors.

Figure 8 Parallel programing model used on the main code sectors

D4.1 Analysis Processes
Version 1.0

 11

2.2.3 User

Twelve of the 53 audits have been requested by industries. This represents
23% of the studies. We consider this to be a significant percentage despite
the fact that we would like to see even more requests from industry. However,
we recognize that it is more difficult to engage industry because of NDAs or
other restrictions with respect to disseminating the results. Obtaining best
cases from non-industrial institutions will provide us very good material when
targeting industries. Industries would not only benefit from the studies they
directly request but also from the improvements implemented in open source
codes that they use. In addition to the industrial requests, there have been 4
requests from governmental institutions and 37 requests from universities and
research centres.

Figure 9 correlates the code area with respect to the user institution. In the plot
the data has been expressed as a percentage, not considering the number of
studies.

Figure 9: Institution profile per code area

It is a little bit early to extract conclusions because of the low number of
studies on some of the areas. But we can see there are code areas
dominated by just one of the profiles. For instance, all the requests from data
analytics, deep learning and text processing belong to industrial companies
while computer science, geophysics, material science, medical and
media/film/arts had all the requests from academic institutions. There have
also been industrial requests in other areas such as chemistry, earth and
atmospheric sciences, physics and engineering.

Figure 10 characterizes the user with respect to the sector of the institution or
department requesting the service. It is interesting to compare this plot with
Figure 4 where the distribution is made with respect to the code sector. For

D4.1 Analysis Processes
Version 1.0

 12

instance, Materials is the most dominating sector of the institutions while there
were only two requests for codes classified by the users as material science.

Figure 10: Institution/department scientific/techni cal area

Figure 11 plots the country of the user’s institution. Despite most of the
requests are from POP partner’s countries (United Kingdom, Germany, Spain
and France), close to a 23% of the requests are from other European
countries.

Figure 11: Institution’s country

Finally, most of the requests (81%) are from institutions external to the POP
consortium. The 10 internal requests (all of them from different departments
than that of the POP partner) 6 of them correspond to RWTH Aachen
University, 2 to HLRS, 1 to JSC and 1 to BSC.

D4.1 Analysis Processes
Version 1.0

 13

2.3 Performance Audit results analysis
This section summarizes the results from the 29 closed Performance Audits.

Figure 12 characterize the assessments with respect to the larger run
analysed. We can see that in most of the cases we have been looking at runs
between few tens and few hundred cores. There are two exceptions of
OpenMP codes where the user requested to look at the serial performance,
one of them from industry.

Figure 12: Assessments scalability (#cores)

Figure 13 classifies the parallel efficiency we have observed in the studies. We
measure the parallel efficiency considering the time the application is
executing in user code over the total time (considering that the time spent in
the MPI or OpenMP parallel runtimes is an overhead that the code has to pay
to run in parallel).

We have considered as very good and good efficiencies ratios higher than
90% and 80% respectively. In these cases, despite there is some space for
improvement, there is not an important need. On the other side we have the
serial analysis of the OpenMP codes where we do not have information on its
efficiency. The rest of the levels (acceptable and bad) that represent a 67% of
the codes analysed do require an improvement to run efficiently in parallel.

Figure 13: Parallel efficiency

D4.1 Analysis Processes
Version 1.0

 14

Looking at the reasons for the efficiency loss, in the case of the codes that
achieve an acceptable parallel efficiency, the most frequent reason has been
problems of data transfer (high volume of data or high number of
communications with respect to the computation). If we focus on the codes
that had a bad efficiency, most of the codes present problems of load
imbalance (the work is not well distributed causing delays on the
synchronization points). We had some severe cases where the load balance
efficiency metric went down to 50%. In some of the cases of bad performance
there was a combination of load balance and data transfer problems.

Figure 14 analyses, at very coarse level, the IPC achieved by the applications
when this metric is available on the performance data. This IPC is not
weighted with respect to the duration of the different regions, but looks at the
overall range of IPC measurements. As boundary we used a value of 1 to
consider the IPC is acceptable or low. From our experience, most of the
codes have to be able to achieve this value or even higher values above 1.5
depending on the specific machine architecture.

Figure 14: IPC achieved

We can see that 44% of the codes had an IPC bigger than 1 for all the
computing regions. A 32% of the codes have some regions with an IPC lower
than 1 that may be still acceptable depending on the weight of the bad
performing region. Finally, a 24% of the codes reported poor IPC for all the
regions denoting a real need to improve the IPC to improve the use of the
resources.

In multiple studies, we detected problems of IPC reduction when scaling. Most
of them are correlated with the multicore sharing of some cache levels. In
other cases, IPC is improved with the scale compensating potential
degradations of the parallel efficiency.

Table 1 and Table 2 summarize the findings and recommendations reported to
the users of POP audits during the first 12 months. We have classified them
with respect to which component (parallel programing paradigm, serial code
execution or machine used). When more data is collected, we will be able to

D4.1 Analysis Processes
Version 1.0

 15

do a deeper analysis including for instance the frequency of the different
symptoms.

 Findings
MPI Bad MPI pattern

Large MPI times
OpenMP Poor OpenMP scaling
Serial Instructions imbalance

IPC generating imbalance
IPC reduces / increases with scale
Code replication
Function with unexpected variability between runs
Too many calls for a function
Identified regions to parallelise

machine Clock frequency variations
Degradation filling nodes
Noisy machine

Table 1: Summary of Audit findings

 Recommendations
MPI Overlap computations and communications/packing

Improve MPI patterns
Advance receive calls
Add OpenMP to reduce stress in MPI collectives
Reduce number of collectives

Serial Optimize serial code
Improve cache reuse
Improve memory usage
Apply vectorization
Reduce divisions multiplying by inverse
Improve load balance
Use new compiler flags, optimized libraries

Table 2: Summary of Audit recommendations

The average time required to perform the assessments (from the start of the
work until the study is tagged as closed) is 2 months varying from less than 1
month to 3 months and a half.

Based on the results we obtained in the Performance Audit, we were able to
convince some of our customers to continue working with us. This has
resulted in 6 Performance Plans and 5 Proof of Concept. As a percentage,
close than 19% of the studies resulted in an extension of service (one of the
studies was extended to both a Performance Plan and a Proof of Concept).
We consider this is a good ratio for the first year as it represents close to one
third of the codes analysed that require an improvement. We will try to
increase this ratio to 50% of the codes that require an improvement for next
year.

D4.1 Analysis Processes
Version 1.0

 16

3. Performance Plans

The Performance Plan is a secondary service performed after the initial Audit
Service. The Performance Plan aims to identify the root cause of issues
previously identified fin the Performance Audit as well as to quantifies and
qualifies potential approaches to address these issues.

In first year of the POP project we received 6 requests for Performance Plans
and have started work on all of them. At time of writing, we have completed
only one of them.. In this section, we briefly describe our progress for all
performance plans, and we provide results (or preliminary results) when
applicable.

3.1 Ateles Performance plan (HLRS)
Ateles is a Finite Element code which uses the Discontinuous Galerkin
scheme on top of a distributed parallel octree mesh data structure. The main
issue of Ateles code, identified during the audit, is load imbalance in the
parallelization. The focus of the performance plan is an in depth analysis of
these load imbalances in the MPI parallelization of the application.

Figure 15 captures how the imbalances prevent scalability of Ateles on the
Hazel Hen system for the given use case. The upper panel shows time lines
for 24 MPI processes, where green is application code, red is MPI calls, and
black lines show MPI Point-to-point communication. The lower panel shows
the fraction of processes in MPI and Application code respectively on the
same time line. Most MPI processes wait on rank 0 for the first two phases,
and on process 2 for the third phase.

In order to study the load imbalance in the MPI parallelization, we used
SCORE-P for creating profiles and traces. By using Cube we analysed
profiles for two configurations of Ateles. The following metrics were calculated:
the total time, the aggregated total time for all MPI processes, the aggregated
computation time and MPI time. We found, that the application running with
this input data sets is clearly MPI-communication-bound.

We used Vampir to visualize the trace for the first configuration. Repeated
time intervals (segments) were identified in the timeline. Further analysis was
focused on subroutines in these segments. Execution and MPI
communication times in an execution segment for each important subroutine
were calculated. We used Vampir to investigate the communication
imbalance. The message size distribution, the communication matrix view with
a number of messages, and with an aggregate message volume were
visualized.

D4.1 Analysis Processes
Version 1.0

 17

Figure 15: Application code load imbalance and its effect on MPI

The reason of the computation and communication imbalance is the bad
domain decomposition. Here it becomes obvious, that the assumption that all
elements have the same computational costs is not valid and by this the load
distribution by equal number of elements along a space filling curve does not
work: different elements trigger different behaviour inside the application.

Performance analysis revealed four basic functions at this point in the code.
The optimization of the function showing the worst load imbalance may
provide up to 20% and optimizations for all four functions could give in total a
36% improvement.

Improvement of the load balance will most likely come along with improving
the MPI collective calls after each time step. While not noticeable for the
smaller first configuration, it may provide already additional 6% improvement
for the larger second configuration.

Beside the computational load imbalance, the application suffers from
communication imbalance. There is a difference in the number of send
messages as well as the message volume. Also we see a very high number
of zero byte messages. These messages should be prevented as they stress
not only the network but also increase the time of the MPI_Waitall calls.

D4.1 Analysis Processes
Version 1.0

 18

3.2 OpenNN Performance plan (BSC)
The OpenNN audit targeted the platform available at the user site. The user is
a Spanish SME and their platform an i7-4790 with 1 socket of 4 cores that can
run up to 8 threads. The parallel efficiency was very good on that scale, but
one of our recommendations was to check the scaling in large node sizes.

The audit also detected a significant variability on the total number of
instructions due to different number of invocations of one of the parallel
routines. This behaviour was not expected by the user who wanted our help to
investigate it further.

The first step has been to install the code in MareNostrum III machine. The
first input analysed was the airfoil case that it is distributed with the sources.
We identified a poor scaling efficiency of this test case even with 2 processes
with respect to the serial execution. Looking at the traces we detected the
number of iterations was increasing with the number of threads causing the
scalability problem observed. Artenics sent us a modified source of this
example as a new input case. With this input the scaling has improved
significantly. The efficiency of both case studies are plotted in Figure 16.

Figure 16: Global efficiency @ MareNostrum III

Most of the performance degradation we see in the new input case with more
than 4 threads is due to a reduction in the IPC probably caused by the sharing
of cache resources within a socket (each compute node is composed of two
8-core Intel Xeon processors).

Both cases tested have the variability on the number of calls of the parallel
loop, so they can be used to check the problem identified in the performance
audit. We have detected some randomness on the executions that we are
currently trying to eliminate with the support of the code owner to have a fair
comparison of the different runs and to check if the non-deterministic
behaviour of the code is the source of the variability on the number of
invocations.

D4.1 Analysis Processes
Version 1.0

 19

This performance plan is progressing very slowly because of the small size of
the company.

3.3 ICON Performance plan (BSC)
While JSC was auditing the scalability of the ICON code, the user requested
BSC to analyse the performance and communication at node level. The main
concerns from the user are the usage of cache memory and the potential for
vectorization of the code. He provided a real size input of a pure atmospheric
simulation with a reduced number of time steps.

As the audit has been done with the Scalasca framework, the approach of the
performance plan is to use Paraver flexibility to look in detail the behaviour of
the different application phases and use the Dimemas simulator to analyse
the code sensitivity to the network parameters.

The initial analysis targeted the balance and the communications and we have
requested a new tracefile to the user enabling sampling to analyse the cache
usage. The preliminary results of potential improvements identified are:

• Internal phases inside the iterations show an unbalanced region where
only rank 0 is computing and other ranks wait in an MPI_Bcast. It
seems this may correspond to an I/O that may be interesting to overlap
as it takes approximately 10 out of 66ms.

• MPI_Irecv calls represent an 8-9% of the time with an average duration
of 15 microseconds. Dimemas simulations indicate ICON could be
sensitive to network latency. Using persistent calls and emitting all the
Irecv in one step should reduce the cost of performing each Irecv
separately.

• Asynchronous communication patterns with the receive call after the

computation are used for both small and large messages (bigger than
16KB). Moving the MPI_Irecv before the computation would start the
rendez-vous reducing the delay of the MPI calls for large messages.

• Each rank communicates first with its neighbour with the lowest id, thus

causing end-point contention that was confirmed by Dimemas
simulations. An optimized scheduling or even some randomness on
the order would eliminate this effect.

• There is a computing region of ten milliseconds at the beginning of

each internal step of the iteration (just after calling the close of
NetCDF). This region has a 15% of imbalance due to different amount
of instructions, and it would be interesting to parallelize it with OpenMP.
It may also be interesting to consider its vectorization. To obtain more
insight we are waiting that the user sends us the new trace activating
sampling.

D4.1 Analysis Processes
Version 1.0

 20

Figure 17 shows a zoom of the MPI calls and the number of instructions for the
first 3 internal phases inside one of the iteration for the first 32 ranks. The
yellow region correspond to the broadcast described in the first bullet of
preliminary results and the dark blue area on the bottom image identifies the
10 milliseconds computation referred on the last bullet.

Figure 17: ICON internal phases inside iterations

3.4 SHEMAT Performance plan (RTWH Aachen)
The performance audit of the SHEMAT suite identified two performance
issues in the application. First, the application suffered from computational
imbalances among the processes, and second, the application performed a lot
of MPI communication.

The computational imbalance among the processes occurred in the
formapproxjacobian function of the application. The computational imbalance
was not because of imbalance in the number of instructions executed by the
processes (work imbalance), but due to the rate at which these instructions
were executed. Figure 18 shows the snapshot of the application trace (a) and
the instructions per second for the same region of the trace (b). It is clear that
the region with a lower instruction rate takes more time, causing imbalance
among the processes.

The difference in instructions rate points to an imbalance in IPC, which can be
the result of difference in number of cache misses. The performance plan will
look at these regions to identify the cause of lower IPC. If possible, it will also
try to recommend any remedies to address the problem.

D4.1 Analysis Processes
Version 1.0

 21

Figure 18: Time spent and instruction rate snapshot of trace of SHEMAT suite

The second performance problem identified in the application was the high
rate of MPI calls, especially the MPI_Allreduce() call. These calls not only take
up a significant amount of application time, but may also hinder the future
scalability of the application. Table 3 shows the MPI calls called very frequently
in the application, and the percentage of the total execution time they occupy.
It is clear that MPI_Allreduce() takes a significant amount to time, especially
when scaled to larger number of processes. Note: some of the time in
MPI_Allreduce is due to the waiting time induced by computational imbalance.

The performance plan will look at the reasons of high frequency of MPI calls,
and if possible, suggest changes to reduce them.

Table 3: Frequently called MPI functions and their percentage of total time

3.5 GS2 Performance plan (NAG)
The findings in the POP Performance Audit on the GS2 application indicated
two main areas of investigation. First, to investigate the poor instruction
scalability, it was found that the instructions Scalability decreases to 53.9%
going from four nodes up to 48 nodes. This means that the number of
instructions executed almost doubles which severely impacts on performance
and scalability. Shown in Figure 19, the computational scalability decreases
significantly as the number of processes increases and is the main contributor
to the poor scalability of the application and that is mainly due to the
instruction scalability.

D4.1 Analysis Processes
Version 1.0

 22

Figure 19: Degradation of the global efficiency and its correlation with the instructions

The audit did not have enough data to investigate where in the application this
increase in instructions was. The performance plan will locate the areas in the
code where this dominates and through investigation of the source code and
discussion with the developers the potential for reducing this will be assessed
and the effect this would have on performance estimated.

Second, to compare the data in the audit, that was performed on a smaller
problem size than normal, with the full production problem size and contrast
the conclusions. The approach for this will be to use the standard audit
methodology on the larger problem size, due to the increased amount of data
this would have taken too long for an audit. Depending on the similarities or
differences further investigation may be made. We will also confirm whether
the instruction scalability is as significant and located in the same regions.

Finally, an investigation into the vectorization of the code was requested. The
vectorization will be investigated by using the appropriate compiler flags, due
to the large size of the code base only key functions will be investigated for
vectorization. These will be located by frequency of use and number of
instructions completed. The potential for improvements and how they would
be achieved will be assessed.

3.6 EPW Performance plan (JSC)
The POP Performance Audit of EPW identified load imbalance as the primary
inefficiency, even at the fairly small scale of 48 processes on two compute
nodes. During the main calculation, the right-hand two-thirds of Figure 20, four
processes performed no work and nine others were significantly under loaded.
A different load imbalance issue, combined with some serial code, affected
the initial calculation in the left-hand third of Figure 20. Resolving these load

D4.1 Analysis Processes
Version 1.0

 23

imbalance issues, and improving scalability, is the goal of the Performance
Plan started in September.

Figure 20: Load imbalance with 48 processes

The first aspects for investigation are how the load balance changes with a
finer (higher-resolution) grid and with larger numbers of processes. Since
certain grid-points involve less work than others, different
partitioning/distribution schemes will be investigated to reduce load
imbalance.

D4.1 Analysis Processes
Version 1.0

 24

4. Recommendations for tools developers

The POP project does an extensive use of the tools and it is a good
framework to identify recommendations for tools developers. From one side
we have the recommendations based on the methodology and the usage of
the tools for the POP studies from people expert on the tools. We also have
recommendations and suggestions based on the experience and questions by
some partners that did not had a previous expertise using the project tools.
Both sources of recommendations are complementary and useful to improve
the performance tools.

With respect to the general recommendations, maybe the most important is
that Python is getting more important, both as a middleware gluing compute
kernels together, and as a programming language itself. Tools have to be
prepared and improve Python support. For instance, in the case of Extrae
(BSC instrumentation) there is a previous support for Python with some
limitations to intercept the multi-process module, which currently limits its
applicability to some of the studies that use that module. This
recommendation is not specific for the tools of the consortium but to the
performance tools developers’ community.

With respect to the methodology being used in the audits, we identified a need
to automatically compute the efficiency metrics. BSC that had been using
these metrics over the last years has already a python script to automatize
this process while JSC is working to add these metrics on the automatic
Scalasca analysis. We also identified the need to check the clock frequency
as part of the metrics computed in the methodology, as in several cases some
partners have identified a significant variability.

Finally there have been many questions and comments from the partners that
started to use the tools developed by JSC and BSC. They are very useful to
identify potential functionalities to improve the tools. As examples, the
partners recommended to implement some mechanism to validate the tools
installation on a new system and to improve documentation for advanced
users.

