
EU H2020 Centre of Excellence (CoE) 1 December 2018 – 30 November 2021

Grant Agreement No 824080

Parallel Engineering Codes: Performance Optimisation with the
POP Methodology

Fouzhan Hosseini, The Numerical Algorithms Group (NAG)

Fouzhan.hosseini@nag.co.uk, Nov 2020

mailto:Fouzhan.hosseini@nag.co.uk

• Promotes best practices in parallel programming
• Improving Parallel Software can add a lot of value: Reduced expenditure, faster results, novel solutions
• The POP Methodology​ - a systematic approach to performance optimization ​building a quantitative picture of application

behavior

• Free services for all EU academic and industrial codes and users
• Suggestions on improving code performance, described in a Performance Assessment
• Practical help with code refactoring through a Proof of Concept

• A Team with
• Excellence in performance tools and tuning
• Excellence in programming models and practices
• R & D background in real academic and industrial use cases

11/30/2020 2

Performance Optimisation and Productivity
A Centre of Excellence in HPC

For further information, visit: https://www.pop-coe.eu pop@bsc.es @POP_HPC youtube.com/POPHPC

How do we measure the performance of our parallel programs?

• Traditional speed-up and efficiency plots?

• Profiling & tracing with performance tools?
• Tracing is powerful, but potentially generates overwhelming amount of data

3

Parallel Performance is hard to understand

Cube, perf. metrics per routines/call stack,
data collected by Scalasca/Score-P

Paraver, timeline view of program execution,
data collected by Extrae

Speedup plot

Difficult to know where to start and what to look for
Main Problem: Lack of quantitative understanding of the actual behavior of a parallel application

Simple but extremely powerful idea

• Devise a simple set of performance metrics using values easily obtained
from the trace data

• Where low values indicate specific causes of poor parallel performance

These metrics then are used to understand

• What are the causes of poor performance

• What to look for in the trace data

• Besides, the metrics provide a common ground for discussing performance
issues

• Between developers, users and analysts

11/30/2020 4

The POP MetricsA Solution:

5

POP MPI Parallel Efficiency Metrics

Parallel Efficiency
Describe how well the execution of your
code is working in parallel
PE = LB × CommE

Global Efficiency
Describes how well your parallel
application scales.
GE = PE × Comps

Computational Scaling
Describe how well the computational
load of an application scales with the
number of processors/threads.
CompS

Communication Efficiency
Reflects the loss of efficiency by
communication.
CommE = max (CT/TT) = SerE × TE

Load Balance
Measures how well work is distributed to
threads/processes in the application.
LB = average (CT) / max (CT)

Transfer Efficiency
Describes the loss of efficiency due to
actual data transfer time.
TE = TT on ideal network / TT

Serialisation Efficiency
Describes efficiency loss due to
dependencies, waiting in MPI calls, ets.
SerE = max(CT / TT on ideal network)

Instruction Scaling
Compares the total number of
instructions executed for different
numbers of threads/processes.

IPC Scaling
Compares how many instructions per
cycle (IPC) are executed for different
numbers of threads/processes.

Frequency Scaling
Compares the processor frequency for
different numbers of threads/processes.

×

×

×

×

Key
CT Computation Time
TT Total Time
Ideal network data transfer takes zero time

For more details visit https://pop-coe.eu

https://pop-coe.eu/

From any trace data, we only need

• Runtime

• Max computation time over all processes

• Average computation time over all processes

• Total number of useful cycles over all processes

• Total number of useful instructions over all processes

• Runtime on an ideal network (optional)

Or use tools developed and supported by the POP CoE

11/30/2020 6

POP Metrics Are Easy to Calculate

Developing open-source tools
• Extrae (tracing), Paraver (visualisation) & Dimemas

• https://tools.bsc.es

• Score-P (profiling and tracing), Scalasca (Post Processing) & Cube (visualisation)
• https://www.scalasca.org

• MAQAO: synthetic reports and hints with a focus on core performance
• http://www.maqao.org

• PyPOP: automated generation of POP metrics from Extrae traces
• https://github.com/numericalalgorithmsgroup/pypop

For more help on how to use these tools and calculate the POP metrics

• See the POP website learning material & online training

• https://pop-coe.eu/further-information/learning-material

• https://pop-coe.eu/further-information/online-training

Other tools can also be used

11/30/2020 7

POP Performance Monitoring Tools

https://pop-coe.eu/further-information/learning-material
https://pop-coe.eu/further-information/online-training

• Code: C++, MPI

• Platform: MareNostrum-IV(@BSC)

• Dual Intel Xeon Platinum 8160
Skylake 48-core nodes

• Performance data collected using
Score-P/Scalasca
• Using compiler instrumentation filter

and hardware counters

• Scale:
• 48-768 cores (1-16 nodes)

8

Example 1: A Computational Fluid Dynamics Code

Example 1- POP Metrics

9

Number of cores 48 96 192 384 768

Global Efficiency 0.93 0.94 0.93 0.84 0.76

Parallel Efficiency 0.93 0.91 0.87 0.77 0.68

Load balance 0.99 0.98 0.98 0.97 0.95

Communication Efficiency 0.94 0.92 0.89 0.79 0.72

Serialisation 0.95 0.94 0.92 0.85 0.81

Transfer efficiency 0.99 0.99 0.97 0.94 0.89

Computational Scaling 1.00 1.03 1.07 1.09 1.12

Instruction Scaling 1.00 0.99 0.97 0.95 0.92

IPC Scaling 1.00 1.05 1.10 1.18 1.27

Frequency Scaling 1.00 1.00 1.00 0.98 0.96

• We immediately see that Serialisation is the main factor that limits the scalability​
• Efficiency values are between 0 to 1, and

• metric values above 0.8 represent acceptable performance

• Serialisation
• typically happens due to at least one process arriving early/late at synchronization point

• Scalasca calculates a delay cost metric
• This metric highlights the root causes of serialization
• Attributes processes' waiting time to the routines causing serialization

• The MPI collective calls and imbalanced computation regions within a Library
call were the main causes of the serialisation on 768 cores

10

Example 1: Cause of Low Serialisation Efficiency

Numbers report percentage of total delay cost

for Example 2 - ROI on 768 cores

Inclusive values (⯈)
Exclusive values (⯆)

…
…

…
…

11

Example 2: A Molecular Dynamic Simulation Code

Timeline of the program execution on 40 cores

• Code: C++, Fortran, MPI
• No access to the source code

• Platform:
• Dual Intel Xeon Gold 6248 CPU @

2.50GHz – 40 cores
• Intel Fortran and C++ compiler with MKL

and MPI Library (2019 version)

• Performance data collected using
Extrae

• Scale:
• 2-40 cores

Example 2: POP Metrics

12

Number of cores 2 10 20 30 40

Global Efficiency 0.95 0.73 0.60 0.47 0.36

Parallel Efficiency 0.95 0.89 0.81 0.75 0.68
Load balance 0.95 0.92 0.85 0.81 0.80
Communication Efficiency 0.99 0.97 0.95 0.92 0.85

Serialisation 1.00 0.99 0.99 0.98 0.94

Transfer efficiency 0.99 0.98 0.96 0.94 0.91

Computational Scaling 1.00 0.82 0.74 0.63 0.53
Instruction Scaling 1.00 0.87 0.83 0.79 0.76

IPC Scaling 1.00 0.99 0.95 0.90 0.83

Frequency Scaling 1.00 0.95 0.94 0.88 0.84

Poor scalability of the code is due to multiple factors:
• Load imbalance and increasing instruction count are major limiting factors,
• Resulting in, respectively, poor Parallel Efficiency and poor Computational scaling

13

Example 2: Useful Instructions

• Total number of useful instructions
increases with increasing number of
processes
• Low Instruction scaling

• Process 1 always executes more
instructions compared with other
processes
• Load imbalance

• With 40 processes, Processor 1
executes 46% more instructions
with respect to average number of
instruction per process
• Amdahl's law

14

Example 3: A Computational Fluid Dynamics Code

• Code: Fortran, OpenMP
• POP Performance Assessment

followed by Proof of Concept
service

• Platform:
• MareNostrum-IV(@BSC)

• Dual Intel Xeon Platinum
8160 Skylake 48-core nodes

• Tools used:
• Extrae & Paraver
• Vtune
• MAQAO

• Scale:
• 1-45 threads

POP metrics from the Performance Assessment
threads 1 10 30 45
Global Efficiency 1.00 0.80 0.36 0.26
⤷ Parallel Efficiency 1.00 0.86 0.60 0.55
⤷ OpenMP Region Efficiency 1.00 0.95 0.74 0.70
⤷ Serial Region Efficiency 1.00 0.91 0.86 0.85
⤷ Computational Scaling 1.00 0.94 0.60 0.48

⤷ Instruction Scaling 1.00 1.01 1.00 1.00
⤷ IPC Scaling 1.00 0.92 0.61 0.50
⤷ Frequency Scaling 1.00 1.00 0.98 0.95

Poor scalability of the code is due to multiple factors:
• OpenMP Region Efficiency and reducing IPC are

major limiting factors,
• Resulting in, respectively, poor Parallel Efficiency

and poor Computational scaling

15

Example 3: Improving the Performance

Original code for Proof of Concept

threads 1 2 10 18 30 45

Global Efficiency 1.00 0.86 0.65 0.41 0.31 0.15

⤷ Parallel Efficiency 1.00 0.97 0.80 0.69 0.62 0.59

⤷ OpenMP Region Efficiency 1.00 0.97 0.81 0.69 0.63 0.60

⤷ Serial Region Efficiency 1.00 1.00 0.99 0.99 0.99 0.99

⤷ Computational Scaling 1.00 0.89 0.81 0.60 0.49 0.26

⤷ Instruction Scaling 1.00 1.00 1.00 1.00 0.99 0.97

⤷ IPC Scaling 1.00 0.87 0.80 0.60 0.51 0.36

⤷ Frequency Scaling 1.00 1.02 1.02 1.00 0.97 0.74

• Refactoring the code to address performance issues via POP Proof of Concept
• Use of OpenMP COLLAPSE clause to improve load balance
• Move some calculations outside the loops & remove unnecessary calculations
• Use optimal loop ordering with nested loops

Modified code

1 2 10 18 30 45

1.00 0.86 0.72 0.62 0.51 0.37

1.00 0.97 0.90 0.83 0.78 0.75

1.00 0.97 0.91 0.85 0.80 0.78

1.00 1.00 0.99 0.98 0.98 0.98

1.00 0.88 0.81 0.75 0.65 0.49

1.00 1.00 1.00 0.99 0.99 0.98

1.00 0.89 0.82 0.77 0.67 0.56

1.00 1.00 0.98 0.98 0.98 0.89

16

Example 3: Performance of modified code

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40 45

Ti
m

e
(s

)

threads

Run time

Original PoC code

Modified PoC code

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40 45
threads

Speedup

Original PoC code

Modified PoC code

• The modified code

• is 1.6x faster on 1 thread due to reduced instruction count

• is 2.1x faster than original on 45 threads

• shows better parallel scaling with a speedup of 16.7 on 45 threads relative to 1 thread

• More than 350 services since 2015 across all domains
• With a significant number of services (about 30%) for engineering

• See https://pop-coe.eu/blog/tags/success-stories
• Performance Improvements for SCM’s ADF Modeling Suite

• 3x Speed Improvement for zCFD Computational Fluid Dynamics Solver

• 25% Faster time-to-solution for Urban Microclimate Simulations

• 2x performance improvement for SCM ADF code

• Proof of Concept for BPMF leads to around 40% runtime reduction

• POP audit helps developers double their code performance

• 10-fold scalability improvement from POP services

• POP performance study improves performance up to a factor 6

• POP Proof-of-Concept study leads to nearly 50% higher performance

• POP Proof-of-Concept study leads to 10X performance improvement for customer
17

Some Success Stories

https://pop-coe.eu/blog/tags/success-stories

POP Website
www.pop-coe.eu

• All the information you need to access
POP services
• https://pop-coe.eu/services

• Blogs
• More Learning Materials

• Newsletter
• subscribe and see past issues

YouTube Channel
https://www.youtube.com/pophpc

• Past Webinars

• POPCasts

11/30/2020 18

Online Content

http://www.pop-coe.eu/
https://www.youtube.com/pophpc

• A series of self-study modules

• For those with limited experience in performance analysis of HPC applications

11/30/2020 19

POP Online training course

• Learning Objectives:
• The challenges involved in HPC performance analysis

• How the POP Metrics aid understanding of application

performance

• How to calculate the POP Metrics for your own HPC

applications

• What POP tools are available and how they can be

installed

• How to capture and analyse performance data with

the POP tools

POP Performance Metrics

• Build a quantitative picture of application behavior

• Allow quick diagnosis of performance problems in parallel codes

• Identify strategic directions for code refactoring

• So far metrics for MPI, OpenMP and Hybrid (OpenMP + MPI) codes

POP works

• Across application domains, platforms, scales

• With (EU) academic and industrial customers including code developers,
code users, HPC service providers and vendors

• To apply for a POP service go to https://pop-coe.eu/services

POP CoE

• Promotes best practices in parallel programming

• Encourages a systematic approach to performance optimization

• Facilitates and invests in training HPC users

11/30/2020 20

Summary

https://pop-coe.eu/services

11/30/2020 21

Contact:
https://www.pop-coe.eu
pop@bsc.es
@POP_HPC
youtube.com/POPHPC

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080.

Performance Optimisation and Productivity
A Centre of Excellence in HPC

