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AGENDA

• About me

• The Story – Application benchmarks.

• Application Benchmarking with Directly-Follows-Graph (DFG).

• Synthesis of large amounts of I/O related system call traces.

• Final words.
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THE LAMP STORY
The Linear Algebra Mapping Problem

The mapping of high level expressions to an optimized sequence of basic linear algebra operations.
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THE LAMP STORY
The Linear Algebra Mapping Problem

The mapping of high level expressions to an optimized sequence of basic linear algebra operations.
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THE LAAB STORY
The Linear Algebra Aware Benchmarks

• Developed benchmarks to evaluate the 

linear algebra awareness of the build of 

popular ML framework (v2022).

• Designed to run in a continuous 

benchmarking setup to automatically 

generate reports (v2025 – yet to 

release).

• Source code: https://github.com/HPAC/LAAB-

Python

Sample CB report

https://github.com/HPAC/LAAB-Python
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THE LAAB STORY
The Linear Algebra Aware Benchmarks

• Developed benchmarks to evaluate the 

linear algebra awareness of the build of 

popular ML framework (v2022).

• Designed to run in a continuous 

benchmarking setup to automatically 

generate reports (v2025 – yet to 

release).

• Source code: https://github.com/HPAC/LAAB-

Python

Sample CB report

For more info, refer: A. Sankaran, N. A. Alashti, C. Psarras and P. Bientinesi, "Benchmarking the Linear Algebra Awareness of TensorFlow and PyTorch," 2022 IEEE 

International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France, 2022, pp. 924-933, doi: 10.1109/IPDPSW55747.2022.00150.

https://github.com/HPAC/LAAB-Python
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BENCHMARKING WITH DFG
The algorithms use case

Identification of root causes of performance differences among algorithm variants.

Algorithmic variants of the generalized least square problem.
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BENCHMARKING WITH DFG
The algorithms use case

Ref: Sankaran, A., Karlsson, L. & Bientinesi, P. Ranking with ties based on noisy performance data. Int J Data Sci Anal (2025). 
https://doi.org/10.1007/s41060-025-00722-1
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AND NOW,

• How to include I/O in LAAB reports?

• Investigate the use of DFG method to synthesize the large amounts of I/O performance data.

The picture is incomplete without I/O information.

The Problem:
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Libraries

e.g., STDIO, MPI-IO, HDF5, NetCDF, etc.

Operating Systems
OS 1 OS 2 OS n

Parallel File System

e.g., IBM Spectrum Scale, Lustre, BeeGFS

Interconnects

Parallel Applications

WHICH I/O DATA TO USE?



14

Libraries

e.g., STDIO, MPI-IO, HDF5, NetCDF, etc.

Operating Systems
OS 1 OS 2 OS n

Parallel File System

e.g., IBM Spectrum Scale, Lustre, BeeGFS

Interconnects

Parallel Applications

Work only with

System calls.

WHICH I/O DATA TO USE?
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strace [COMMAND]

Example:

Basic Usage:

TRACING WITH STRACE
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Example:

strace –f –tt –T –y –e read,write ls

TRACING WITH STRACE
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Example:

Trace file: host_9042.st

srun –n 3 strace –f –tt –T –y –e read,write –o $hostname_$$.st ls

host_9042.st

host_9043.st

host_9044.st

TRACING WITH STRACE
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THE CHALLENGE

Challenge: How do you extract useful information from large amounts of information in the 

system call traces? 
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read+/p/software

read+/p/software

read+/usr/lib64

THE SYNTHESIS METHOD

Activity

Idea: 

• Map each row to a string that helps answer your question. We call this string “Activity”.

• Apply grouping based on activities and compute statistics. 

• Identify the directly-follows relation between the activities to build a Directly-Follows-Graph 

(DFG). 
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read+/usr/lib64

Activity

• This data is can be formalized as an event-log in Process Mining.

• Process mining introduces scalable techniques to translate event logs into different types of 

dependency graphs, including Directly-Follows Graph.

• Ref: W. M. P. Van Der Aalst, “Foundations of process discovery,” in Process Mining Handbook, DOI: 

https://doi.org/10.1007/978-3-031-08848-3_2

read+/p/software

read+/p/software

THE SYNTHESIS METHOD
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P0.strace.log P1.strace.log

Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

write+$PROJECT

write+$SCRATCH

THE SYNTHESIS METHOD
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Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

read+$PROJECT

write+$PROJECT

P0 P1

THE SYNTHESIS METHOD
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Activity
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Activity

read+$SOFTWARE

read+$PROJECT

write+$PROJECT
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THE SYNTHESIS METHOD
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P0.strace.log P1.strace.log

Logs from multiple processes are transformed into one DFG.

THE SYNTHESIS METHOD
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SNAPSHOT OF LAAB REPORT WITH I/O
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THE IMPLEMENTATION: STRACE INSPECTOR

• One log file is generated per node used.

• The parsing of log files and mapping to activities are done in parallel (in v1.1.0).

• The construction of DFG requires one pass through the activity log - O(n), where n is the number of 

lines in the filtered event log after mapping.

• The complexity of rendering the DFG is O(m2), where m is the number activities. For all intents and 

purposes, m should be small.  

Source code: https://gitlab.jsc.fz-juelich.de/st-inspector/st_inspector

Ref: A. Sankaran, I. Zhukov, W. Frings and P. Bientinesi, "Inspection of I/O Operations from System Call Traces using Directly-Follows-Graph," SC24-W: 

Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA, 2024, pp. 1562-1575, doi: 

10.1109/SCW63240.2024.00196

https://gitlab.jsc.fz-juelich.de/st-inspector/st_inspector
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