
BENCHMARKING OF I/O ACTIVITIES IN HPC APPLICATIONS WITH

STRACE INSPECTOR

34TH POP WEBINAR | JUNE 2, 2025 | ARAVIND SANKARAN

2

AGENDA

• About me

• The Story – Application benchmarks.

• Application Benchmarking with Directly-Follows-Graph (DFG).

• Synthesis of large amounts of I/O related system call traces.

• Final words.

3

THE LAMP STORY
The Linear Algebra Mapping Problem

The mapping of high level expressions to an optimized sequence of basic linear algebra operations.

4

THE LAMP STORY
The Linear Algebra Mapping Problem

5

THE LAMP STORY
The Linear Algebra Mapping Problem

The mapping of high level expressions to an optimized sequence of basic linear algebra operations.

6

THE LAMP STORY
The Linear Algebra Mapping Problem

The mapping of high level expressions to an optimized sequence of basic linear algebra operations.

8

THE LAAB STORY
The Linear Algebra Aware Benchmarks

• Developed benchmarks to evaluate the

linear algebra awareness of the build of

popular ML framework (v2022).

• Designed to run in a continuous

benchmarking setup to automatically

generate reports (v2025 – yet to

release).

• Source code: https://github.com/HPAC/LAAB-

Python

Sample CB report

https://github.com/HPAC/LAAB-Python

9

THE LAAB STORY
The Linear Algebra Aware Benchmarks

• Developed benchmarks to evaluate the

linear algebra awareness of the build of

popular ML framework (v2022).

• Designed to run in a continuous

benchmarking setup to automatically

generate reports (v2025 – yet to

release).

• Source code: https://github.com/HPAC/LAAB-

Python

Sample CB report

For more info, refer: A. Sankaran, N. A. Alashti, C. Psarras and P. Bientinesi, "Benchmarking the Linear Algebra Awareness of TensorFlow and PyTorch," 2022 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Lyon, France, 2022, pp. 924-933, doi: 10.1109/IPDPSW55747.2022.00150.

https://github.com/HPAC/LAAB-Python

10

BENCHMARKING WITH DFG
The algorithms use case

Identification of root causes of performance differences among algorithm variants.

Algorithmic variants of the generalized least square problem.

11

BENCHMARKING WITH DFG
The algorithms use case

Ref: Sankaran, A., Karlsson, L. & Bientinesi, P. Ranking with ties based on noisy performance data. Int J Data Sci Anal (2025).
https://doi.org/10.1007/s41060-025-00722-1

12

AND NOW,

• How to include I/O in LAAB reports?

• Investigate the use of DFG method to synthesize the large amounts of I/O performance data.

The picture is incomplete without I/O information.

The Problem:

13

Libraries

e.g., STDIO, MPI-IO, HDF5, NetCDF, etc.

Operating Systems
OS 1 OS 2 OS n

Parallel File System

e.g., IBM Spectrum Scale, Lustre, BeeGFS

Interconnects

Parallel Applications

WHICH I/O DATA TO USE?

14

Libraries

e.g., STDIO, MPI-IO, HDF5, NetCDF, etc.

Operating Systems
OS 1 OS 2 OS n

Parallel File System

e.g., IBM Spectrum Scale, Lustre, BeeGFS

Interconnects

Parallel Applications

Work only with

System calls.

WHICH I/O DATA TO USE?

15

strace [COMMAND]

Example:

Basic Usage:

TRACING WITH STRACE

16

Example:

strace –f –tt –T –y –e read,write ls

TRACING WITH STRACE

17

Example:

Trace file: host_9042.st

srun –n 3 strace –f –tt –T –y –e read,write –o $hostname_$$.st ls

host_9042.st

host_9043.st

host_9044.st

TRACING WITH STRACE

18

THE CHALLENGE

Challenge: How do you extract useful information from large amounts of information in the

system call traces?

19

read+/p/software

read+/p/software

read+/usr/lib64

THE SYNTHESIS METHOD

Activity

Idea:

• Map each row to a string that helps answer your question. We call this string “Activity”.

• Apply grouping based on activities and compute statistics.

• Identify the directly-follows relation between the activities to build a Directly-Follows-Graph

(DFG).

20

read+/usr/lib64

Activity

• This data is can be formalized as an event-log in Process Mining.

• Process mining introduces scalable techniques to translate event logs into different types of

dependency graphs, including Directly-Follows Graph.

• Ref: W. M. P. Van Der Aalst, “Foundations of process discovery,” in Process Mining Handbook, DOI:

https://doi.org/10.1007/978-3-031-08848-3_2

read+/p/software

read+/p/software

THE SYNTHESIS METHOD

21

P0.strace.log P1.strace.log

Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

write+$PROJECT

write+$SCRATCH

THE SYNTHESIS METHOD

22

Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

read+$PROJECT

write+$PROJECT

P0 P1

THE SYNTHESIS METHOD

23

Activity

read+$SOFTWARE

read+$SOFTWARE

write+$PROJECT

Activity

read+$SOFTWARE

read+$PROJECT

write+$PROJECT

P0 P1

THE SYNTHESIS METHOD

24

P0.strace.log P1.strace.log

Logs from multiple processes are transformed into one DFG.

THE SYNTHESIS METHOD

25

26

SNAPSHOT OF LAAB REPORT WITH I/O

27

THE IMPLEMENTATION: STRACE INSPECTOR

• One log file is generated per node used.

• The parsing of log files and mapping to activities are done in parallel (in v1.1.0).

• The construction of DFG requires one pass through the activity log - O(n), where n is the number of

lines in the filtered event log after mapping.

• The complexity of rendering the DFG is O(m2), where m is the number activities. For all intents and

purposes, m should be small.

Source code: https://gitlab.jsc.fz-juelich.de/st-inspector/st_inspector

Ref: A. Sankaran, I. Zhukov, W. Frings and P. Bientinesi, "Inspection of I/O Operations from System Call Traces using Directly-Follows-Graph," SC24-W:

Workshops of the International Conference for High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA, 2024, pp. 1562-1575, doi:

10.1109/SCW63240.2024.00196

https://gitlab.jsc.fz-juelich.de/st-inspector/st_inspector

28

Acknowledgements

• This research was financially supported by the Juelich Supercomputing Center at

Forschungszentrum Juelich and the BMBF project 01-1H1-6013 AP6 NRW

Anwenderunterstutzung SiVeGCS.

• Additionally, supervision support from RWTH Aachen University through the DFG

project IRTG-2379 is gratefully acknowledged.

• Compute time on JUWELS Booster at JSC and Kebnekaise at HPC2N (Sweden)

is gratefully acknowledged.

Thank you for you attention.

