
EU H2020 Centre of Excellence (CoE) 1 October 2015 – 31 March 2018

Grant Agreement No 676553

How to Improve the
Performance of Parallel Codes

Jon Gibson, NAG

• Code Performance

• Profiling and Optimisation

• Live Demo

• Real Examples of Code Improvements

2

Contents

• Performance Optimisation and Productivity

• A Centre of Excellence
• Collaborative European project funded by Horizon 2020 programme

• Runs October 2015 – March 2018

• Providing Free Services within Europe
• Precise understanding of parallel application and system behaviour

• Across application areas, platforms and scales

• Suggestions/support on how to rewrite code in the most productive way

• For academic and industrial codes and users

3

The POP Service

• Participating institutions:
• Barcelona Supercomputing Center, Spain (coordinator)
• HLRS, Germany
• Jülich Supercomputing Center, Germany
• NAG, UK
• RWTH Aachen, IT Center, Germany
• TERATEC, France

• A team with:
• Expertise in performance analysis and optimisation

• Expertise in parallel programming models and practices

• A research and development background and a
proven commitment to real academic and industrial use cases

4

The POP Team

• Time is money – especially on supercomputers

• To run bigger and/or more complex simulations

• To remain competitive with similar codes

5

Why improve performance?

• Scientific Codes
• Often large codes developed by many people

• Development driven by functionality rather than performance

• Difficult to get an overview of the code’s behaviour

• HPC machines
• Complex architectures

• Many nodes, each consisting of a number of multicore processors

• An interconnect and a filesystem

• Vector operations

• Deep memory hierarchies with a number of levels of cache

• Not easy to program efficiently

6

Understanding Performance is Hard

• Are there any easy wins?
• Are we using the best performing compiler for our code?
• With the best choice of compiler flags?
• And the best performing MPI library?

• We need to be very selective before spending time optimising code
• “Premature optimization is the root of all evil.” – Donald Knuth
• Optimising code is often time-consuming
• Optimised code is often more difficult to read/understand (hence

debug/maintain)
• Optimising a routine that only takes 2% of the execution time is going to have

very little impact on the overall performance

• We therefore need a way to understand the behaviour of a code in
order to guide the optimisation process

7

Where do we start?

• Profiling refers to the monitoring of a code’s behaviour as it executes

• There are a number of profiling tools available, which by helping to
answer a number of key questions, allow us to optimise effectively
• What are the most time-consuming routines?

• What are the most time-consuming lines in those routines?

• Is it easy to optimise or is the efficiency already high?

• What needs to be optimised, i.e. what is the bottleneck?
• Cache efficiency, vectorisation, etc

• For a parallel code, is it load-balanced?
• Essential if the code is to scale

• How many MPI messages are there and what size are they?

8

Profiling and Performance Analysis

• Gprof – GNU Profiler

• PAPI – Performance Application Programming Interface

• TAU – Tuning and Analysis Utilities

• Scalasca

• Extrae and Paraver

• Allinea MAP

• HPCToolkit

• OpenSpeedShop

• Vampirtrace and Vampir

• …and many others.

9

Some Profiling Tools

Instrumentation

Modification of the
executable to record

events related to
performance

Measurement

Data is collected as the
instrumented code is

executed

Analysis and
Presentation

All the data files are
loaded into memory
and presented in one

or more analysis
reports

Optimisation

Formulate an optimisation
strategy

Implement the
optimisations

10

The Profiling-Optimisation Cycle

Start

Finish

• The Input Data
• Profiling results, and therefore possible bottlenecks, are likely to change with

different input files.

• Ideally, therefore, we want to profile a typical production run rather than a
trivial test case.

• The Number of Cores
• Profiling results are likely to change when the job is run on different numbers

of cores.

• When a code does not scale well, profiling it on different numbers of cores
will help identify the cause of the poor scaling.

• Ideally, profile on the number of cores you aim to scale up to.

11

The Details of the Run

• As part of a current investigation, data has been collected for this
code being run on ARCHER using the tool Extrae.

• We will take a look at how this data can be visualised using Paraver.
• Extrae and Paraver are developed by Barcelona Supercomputing Center

12

A Real Example

13

48 MPI processes for 4 time steps

• Toolbox for time domain acoustic and ultrasound simulations
in complex and tissue-realistic media

• C++ code parallelised with Hybrid MPI and OpenMP (+ CUDA)

• Profiling showed that
• 3D domain decomposition suffered from major load imbalance:

exterior MPI processes with fewer grid cells took much longer than interior

• OpenMP-parallelised FFTs were much less efficient for grid sizes of exterior,
requiring many more small and poorly-balanced parallel loops

• Using a periodic domain with identical halo zones for each MPI rank
reduced overall runtime by a factor of 2

14

k-Wave – Brno Uni. of Technology

www.k-wave.org

• Comparison time-line before (top) and after (bottom) balancing,
showing exterior MPI ranks (0,3) and interior MPI ranks (1,2)
• MPI synchronization in red; OpenMP synchronization in cyan

15

k-Wave – Brno Uni. of Technology

• Electron-Phonon Wannier (EPW) materials science DFT code;
part of the Quantum ESPRESSO suite

• Fortran code parallelised with MPI
• Profiling showed

• Poor load balance
• Large variations in runtime, likely caused by I/O
• Final stage spends a great deal of time writing output to disk

16

EPW – University of Oxford

• Original code had all MPI processes writing result to disk at the end
• This was modified this so that only one rank wrote the output
• On 480 MPI processes, time taken to write results fell from over 7

hours to just 56 seconds: a 450-fold speed-up!

17

EPW – University of Oxford

epw.org.uk

• Combined with other improvements,
this enabled simulations to scale to a
previously impractical 1920 MPI
processes

• Smoothed particle hydrodynamics code
• C++ with OpenMP

• Profiling identified several issues
• Definitions of variables in inner loops

• Unnecessary operations caused by indirection in code design

• Frequently-used non-inlined functions

• High cache misses, which could be reduced by reordering the processing of
particles

• The developers decided to completely rewrite the code based on
their new knowledge, leading to an overall performance
improvement of 5x - 6x

18

sphFluids – Stuttgart Media University

• Simulation of microstructure evolution in polycrystalline materials

• After profiling, the following optimisations were implemented
• Memory allocation library optimised for multi-threading

• Reordering the work distribution to threads

• Algorithmic optimisation in the convolution calculation

• Code restructuring to enable vectorisation

• An improvement of over 10x was demonstrated for the region
concerned, with an overall application speed-up of 2.5x

19

GraGLeS2D – RWTH Aachen

? Performance Audit Report
• Identify performance issues of customer code

• Small effort (< 1 month)

! Performance Plan Report
• Follow-up on the audit service

• Identifies the root causes of issues and qualifies/quantifies fixes

• Longer effort (1-3 months)

 Proof-of-Concept Software Demonstrator
• Experiments and mock-up tests for customer codes

• Kernel extraction, parallelisation, mini-apps, …

• 6 months effort

20

What does POP do?

• Code Developers
• Assessment of detailed behaviour of code

• Suggestion of most productive directions to refactor code

• Users & Infrastructure Operators
• Assessment of achieved performance in production conditions

• Possible improvements from modifying environment setup

• Evidence to interact with code provider

• Training of support staff

• Vendors
• Benchmarking, customer support and system design

21

Who are POP targeting?

• A selection of training materials is available on the POP website
• https://pop-coe.eu/further-information/learning-material

• Please direct any questions regarding this webinar to pop@nag.co.uk

• and if you’re interested in using the POP service, then e-mail
pop@bsc.es

• We hope to see you at future webinars!
• Please let us know if there’s anything that you’d particularly like to hear

about.

22

Further Information

https://pop-coe.eu/further-information/learning-material
mailto:pop@nag.co.uk
mailto:pop@bsc.es

6/15/2017 23

Contact:
https://www.pop-coe.eu
mailto:pop@bsc.es

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553.

Performance Optimisation and Productivity
A Centre of Excellence in Computing Applications

