
EU	H2020	Centre	of	Excellence	(CoE)																																																																																1	October	2015	– 31	March	2018

Grant	Agreement	No	676553

Getting	Performance	from	OpenMP	
Programs	on	NUMA	Architectures
Christian	Terboven,	RWTH	Aachen	University

terboven@itc.rwth-aachen.de

• Among	the	most	obscure	things	that	can	negatively	impact	
performance	of	OpenMP	programs	are	cc-NUMA	effects

• These	are	not	restricted	to	OpenMP
• But	they	most	show	up	because	you	used	OpenMP
• In	any	case	they	are	important	enough	to	be	covered	here

2

OpenMP	and	Performance

8/4/17

• Set	of	processors	is	organized	inside	
a	locality	domain	with	a	locally	
connected	memory
• The	memory	of	all	locality	domains	is	
accessible	over	a	shared	virtual	address
space
• Other	locality	domains	are	access	over	
a	interconnect,	the	local	domain	
can	be	accessed	very	efficiently	without	
resorting	to	a	network	of	any	kind

8/4/17 3

What	is	cc-NUMA?

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

Virtual	address space

• Advantages
• Scalable	in	terms	of	memory	bandwidth
• “Arbitrarily”	large	numbers	of	processors:	There	exist	systems
with	over	1024	processors

• Disadvantages
• Efficient	programming	requires	precautions	with	respect
to	local	and	remote	memory,	although	all	processors	share
one	address	space
• Cache	coherence	is	hard	and	expensive	in	implementation

• e.g.	recent	writes	need	invalidation	and	may	consume	a	lot	of	the
available	bandwidth

8/4/17 4

Advantages	&	Disadvantages

• You should have a	basic understanding of the system topology.	You
could use one of the following options on	a	target machine:
• numactl tool to control the Linux	NUMA	policy

• numactl --hardware

• Delivers compact information about NUA	nodes and the associated processor ID
• Intel	MPI‘s cpuinfo tool

• cpuinfo

• Delivers information about the number of sockets (=	packages)	and the mapping of
processor IDs	to CPU	cores used by the OS

• hwlocs‘	hwloc-ls tool (comes with Open-MPI)
• hwloc-ls

• Displays	a	(graphical)	representation of the system topology,	separated into NUMA	
nodes,	along with the mapping of processor IDs	to CPU	cores used by the OS	and
additional	information on	caches

8/4/17 5

Query	your	System

• Stream	example with and without NUMA-aware	data placement
• 2	socket	system with Xeon	X5675	processors,	12	OpenMP	threads

8/4/17 6

To	be	NUMA	or	not	to be

copy scale add triad

ser_init 18.8	GB/s 18.5	GB/s 18.1	GB/s 18.2	GB/s

par_init 41.3	GB/s 39.3	GB/s 40.3	GB/s 40.4	GB/s

CPU	0

T1 T2 T3

T4 T5 T6

CPU	1

T7 T8 T9

T10 T11 T12

MEM

a[0,N-1]
b[0,N-1]
c[0,N-1]

CPU	0

T1 T2 T3

T4 T5 T6

CPU	1

T7 T8 T9

T10 T11 T12

MEM

a[0,(N/2)-1]
b[0,(N/2)-1]
c[0,(N/2)-1]

ser_init:

par_init:

MEM

MEM

a[N/2,N-1]
b[N/2,N-1]
c[N/2,N-1]

double* A;

A = (double*)
malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

8/4/17 7

Data	Placement?

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

How To Distribute The Data ?

double* A;

A = (double*)
malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

8/4/17 8

Serial	Data	Placement

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0]	…	A[N]

• Serial	code:	all	array elements are allocated in
the memory of the NUMA	node closest to the
core executing the initializer thread (first touch)

double* A;

A = (double*)
malloc(N * sizeof(double));

#pragma omp parallel for

for (int i = 0; i < N; i++) {

A[i] = 0.0;

}

8/4/17 9

First	Touch	Data	Placement

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

• Serial	code:	all	array elements are allocated in
the memory of the NUMA	node closest to the
core executing the initializer thread (first touch)

A[0]	…	A[N/2] A[N/2]	…	A[N]

• Selecting the „right“	binding strategy depends not	only on	the
topology,	but	also	on	the characteristics of your application
• Putting threads far apart,	i.e.,	on	different	sockets

• May	improve the aggregated memory bandwidth available to your application
• May	improve the combined cache size available to your application
• May	decrease performance of synchronization constructs

• Putting threads close together,	i.e.,	on	two adjacent cores that possibly share
some caches
• May	improve performance of synchronization constructs
• May	decrease the available memory bandwidth and cache size

• If you are unsure,	just	try a	few options and then select the best one.

8/4/17 10

Decide	for	Binding	Strategy

• Define	OpenMP	places
• set	of	OpenMP	threads	running	on	one	or	more	processors
• can	be	defined	by	the	user,	i.e.,	OMP_PLACES=cores

• Define	a	set	of	OpenMP	thread	affinity	policies
• SPREAD:	spread	OpenMP	threads	evenly	among	the	places,
partition	the	place	list
• CLOSE:	pack	OpenMP	threads	near	master	thread
• MASTER:	collocate	OpenMP	threads	with	master	thread

• Goals
• user	has	a	way	to	specify	where	to	execute	OpenMP	threads	for	locality	
between	OpenMP	threads	/	less	false	sharing	/	memory	bandwidth

8/4/17 11

OpenMP	4.0:	Places	+	Policies

• Assume the following machine:

• 2	sockets,	4	cores per	socket,	4	hyper-threads per	core

• Abstract	names for OMP_PLACES:
• threads:	Each	place	corresponds	to	a	single	hardware	thread	on	the	target	
machine
• cores:	Each	place	corresponds	to	a	single	core	(having	one	or	more	hardware	
threads)	on	the	target	machine
• sockets:	Each	place	corresponds	to	a	single	socket	(consisting	of	one	or	more	
cores)	on	the target machine

8/4/17 12

OMP_PLACES	env.	variable

p0 p1 p2 p3 p4 p5 p6 p7

• Example‘s Objective:
• separate	cores for outer loop and near cores for inner loop

• Outer Parallel	Region:	proc_bind(spread),	Inner:	proc_bind(close)
• spread creates partition,	close binds threads within respective partition
OMP_PLACES=(0,1,2,3), (4,5,6,7), ... = (0-4):4:8 = cores
#pragma omp parallel proc_bind(spread) num_threads(4)
#pragma omp parallel proc_bind(close) num_threads(4)

• Example
• initial

• spread 4

• close 4
8/4/17 13

OpenMP	4.0:	Places	+	Policies

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

p0 p1 p2 p3 p4 p5 p6 p7

• First	Touch:	Modern	operating systems (i.e.,	Linux	>=	2.4)	determine the
physical location of a	memory page during the first page fault,	when the
page is first „touched“,	and put it close to the CPU	that causes the page
fault
• Everything under control?
• In	principle Yes,	but	only if

• threads can be bound explicitly,
• data can be placed well by first-touch,	or can be migrated,

• What if the data access pattern changes over time?

• Explicit	Migration:	Selected	regions of memory (pages)	are moved from
one NUMA	node to another via	explicit	OS	syscall

• Automatic Migration:	No support for this in	current operating systems

8/4/17 14

NUMA	Strategies:	Overview

• Explicit	NUMA-aware	memory allocation:
• By carefully touching data by the thread which later uses it
• By changing the default memory allocation strategy with numactl
• By explicit	migration of memory pages

• Linux:	move_pages()
• Include <numaif.h> header,	link	with -lnuma
long move_pages(int pid,	unsigned long count,	void **pages, const int *nodes,	int *status,	
int flags);

• Example:	using numactl to distribute pages round-robin:
• numactl –interleave=all ./a.out

• Example:	Run	on	node 0	with memory allocated on	nodes 0	and 1
• numactl --cpubind=0 --membind=0,1 ./a.out

8/4/17 15

User	Control	of Memory	Affinity

8/4/17 16

Contact:
https://www.pop-coe.eu
mailto:pop@bsc.es

This	project	has	received	funding	from	the	European	Union‘s	Horizon	2020	research	and	innovation	programme under	grant	agreement	No	676553.	

Performance	Optimisation and	Productivity	
A	Centre	of	Excellence	in	Computing	Applications

