Understand the Performance of your
Application with just Three Numbers

Jesus Labarta (BSC)

POP Webinar 3
October 11th 2017

EU H2020 Center of Excellence (CoE)

Agenda 909

* Motivation and current practices
* Efficiency model
* How to compute it

* Examples
 What’s next

Measuring performance of MPI programs

* How do we measure the performance of our MPI programs?
* Elapsed time
 Scaling plots
* Profiles
* Traces

* How much insight do we get?

e Who to blame?

e Myself? the machine? the programming model? its implementor? the tool developer?
The environment and way the program is run?

* Proper direction to refactor?

Performance and scaling 0009

) Elapsed time : Speed-up A - N Efficiency
* Scaling plots X / "N
* Speedup, efficiency !///' DR i
’ 0?20000 40000 60000 80000 100000 120000 " 6 20000 40000 60000 50000 10000 120000
processars processas

* To consider
* The global effect

» Too coarse aggregation

* Risk of speculating about causes of observed behavior with little capability of verifying
hypotheses

* Reference time for scaling plots

Profiling

EEEEEEENEN,
= i

* Aggregate metrics (mostly time)
* During program execution

* For components of syntactic structure
* routines, call stacks, loops

. .
HOtSpOtS Task AppTime MPITime MPI1% T e
* Code regions dominating the profile 0 153 102 666 Scalasca (J5C)
where to focus optimization 1 e e
3 15.3 0.239 1.56
£ 123 6.37 519 |_MPP gprof
Each sample counts as 0.01 seconds.
: % cumulative self name
* TO ConSIder 22.80 20.82 20.82 LagrangeNodal(Domain&)
° Loose information on distributions 18.72 37.92 17.10 CalcFBHourglassForceForElems(Domaing&, ...)
17.15 53.58 15.66 EvalEOSForElems(Domain&, double*, ...)
i Many COdeS ﬂat 12.68 65.16 11.58 CalcKinematicsForElems(Domain&, double*, ...)
° Keep in mlnd Amdahlls |aW 10.87 75.09 9.93 IntegrateStressForElems(Domain&, double*, ...)

6.53 81.05 5.96 CalcMonotonicQGradientsForElems(Domaing&, ...)
4.80 85.43 4.38 CalcQForElems(Domain&, double*)

Tracing

* Emitting all events for later analysis or visualization

«[] 0.00 Time (sec) L1 0.00 MAIN_
*[] 0.00 Execution +] 0.00 init_parallel
M 86517200 Computation 0.00 timer_start

B3 MP1

28194.04 Management
160.84 Synchronization
0.00 Communication
- 359.64 Point-to-point

9831.79 Collective
[J 0.00 Early Reduce
[0.00 Early Scan

W 16033.50 Late Broadcast [
W 43.08 Wailtat Nx NN
W 1.85 N x N Completion [l
0.00 One-sided
] 0.00 File O

| nizations (ecc)
0 MPf pair-wise one-sided synchranization
W 145479 MPI communications {occ)
=[] 0MPIfile operations (occ)
=l 9.4289 MP1 bytes transferred (bytes)
I 29790.70 Delay costs (sec)

7168 MPI synch

* To consider
* Lots of da

0.00 init_shm
0.00 openmp_

etup

+ L] 0.00 xyzzyaaael

1 0.00 xyzzyaaadi

+[] 0.00 print_centred_line
W 416.02 Late Sender [.

0.00 global_time_heading
(] 0.00i2s
i

0.00 shalloc_clean
1 0,00 end_parallel

ta

Scalasca (JSC) -

MPT call @ fds_256m 256x1 5Bit.chop_it48-44.prv

THREAD
THREAD

THREAD

THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD
THREAD

1.1.1

Paraver (BSC)

* The “Big Performance Data” challenge: how to handle
* The “Performance Analytics” challenge: flexibility, analysis power, interpretation

Insight on performance

* Understanding performance isn’t easy (Jon Gibson POP 15t webinar)
* Many factors and interaction between them
* Potentially overwhelming amount of data. How to get real insight ?

e Can we report performance ...
* Few numbers ?
* Fundamental concepts ?

* ... pointing to “strategic” directions on how to refactor the code ?

* Having a common ground, abstracted from program specificities, on
which to discuss between developers, users and analysts would be
extremely useful

Characterizing MPI application performance RAJRS

* Parallel Efficiency Model
0.1
* Multiplicative

CommEff
Ser * Tr

ParEff = LB

* Efficiency factors
* Load balance
* Globally uneven distribution of work
* Serialization
* Synchronization. “Circular” wait for “slow” processes
* Dependencies or dynamic imbalances propagated through synchronizations
e Transfer
e Actual limitation caused by data transfer

A bit on load balance 000

A

* Load balance efficiency T .

e Account for variability in amount of work _

between processes

B compute Actual run timeline
B wait
* Directly reflecting impact of such
variability in performance (parallel Pack all
efficiency) computation
. < T >
LB =
(W+)
g - V9 (...)
max(...) Gant

A bit more on serialization

* Actual dependence chains
——— ——
p2p message p2p message

 Alternating load imbalances

Collective call Collective call

009

B compute

B wait

Why are these metrics important ? 0009

* They quantify fundamental parallel programming concepts ...

e Other metrics do not:

* Lot of time in MPI -
e Blame MPI vendor?
* Pack messages ?
* Overlap communication and computation ?
* Improve domain decomposition ?
* Work on numbering algorithm ?

e ... providing deep insight/awareness ...
* Of known characteristic of the program ... even if not properly quantified

* Exposing unexpected behaviors
e ...and a common ground for discussion

Example

Parallel Efficiency 0.9174 0.9056 0.8874 0.8466 o.s641 [NCHESSIN

Load Balance 0.9460 0.9249 0.9340 0.8584 0.8705 0.8132
Comm. Efficiency 0.9697 0.9792 0.9501 0.9863 0.9926 0.9708
Serialization 0.9699 0.9795 0.9505 0.9870 0.9937 0.9754
Transfer 0.9998 0.9997 0.9996 0.9993 0.9989 0.9953

* Even if “fairly good” numbers, it gives important indications on
relevance of individual factors, coupling effects, ...

e Can point to “outliers” which may be studied in detail
 Where in the timeline? Cause ?

How to compute 000

e BSC tools based on traces

< > 1 P
Gant LB = P =
max(C;)
E—"
i i | Communication
| Effia max(C;)
'« Tideal] ; Efficiency Ser = = i
: ! ideal
Dimemas '
“ideal “
simulation Trf = T idea
Serialization Transfer

How to compute 009

 Scalasca (JSC): based on traces

e B compute
B e W wait
] . I

M Compute (c))
Synchronization(s))
M Transfer (t))

How to compute 009

» With standard profile data per process:
e Should have precise profiling of the MPI activity

1 P
p <
Task AppTime MPITime MPI% mpiP output LB = =1
0 153 1.02 6.66 max(C,)
1 153 0.293 1.91 i
2 153 0.607 3.95 Where:
3 153 0.239 1.56 - -
4 153 0.873 5.69 c, = AppTime, — MPITime
5 153 1.01 6.58
6 153 0.646 4.21 -
7 153 168 10.94 T = max(AppTime;)
* 123 6.37 5.19
— . max(C;)
* Communication efficiency: CommEff = T '

* Can not separate serialization and transfer effects

Methodology on BSC infrastructure 009

e Obtain traces
e Extrae (https://tools.bsc.es/extrae)

* Might want to generate cuts of the “Focus Of Analysis” area
* Paraver/paramedir (https://tools.bsc.es/paraver)

* Perform automated scaling analysis

$model factors.py —sc strong -t 8.prv 16.prv 32.prv 64.prv

* Generates several csv, gnuplots

02
_ U

Examples

Model Factors Summar
Model Factors Summary -- %name Model Factors Summary ry

Performance

LB ———
B —— T T
[f———
1+ 1 1k 1
0.8 4
08 [1 08 -
0.6 4
5 oel]
2 06 5 os]
2 z
5 2
i
0.4 . 0af i
04 i
02 02| b
) | 02 Load Balance —— |
Serialization
5 1 Transfer
) 10 100 0 | Paralle| Efficiency
16 32 64 128 256 512 1024 2048 Processes 10 100
Processes -
Model Factors Summary
MiodelFaciors Summary Comparison of Predicted and Measured Fundamental Factors :
HACC second phase
1 i
T 1 T
s e s—
0.9 9‘_’9\9——6\@ |
08 1
e 08 - 4
3
[fod .
2' s E 0.7 i 2 06
) o
= 5 B
z 2 06 F]
04 g E 04 s
0.5 b
L] Measured Load Balance —H—
02 ad Balance + L 4
etatzanin ¢ 04 Measured Serialization — o — 02 Load balance -
T Measured Transfer —e— Serlalization
Parallel Efficiency 0.3 L L h L Transfer
0 L .
T o o0 10 100 1000 0 . Paralle| Efficiency
Processes Processes 0 1

Processes

Interested in causes ? 009

* Possible causes:
* Load balance: work distribution, IPC (locality, NUMAness...), core frequency, ...

 Serialization: dependencies, dynamic load imbalances within multiple phases
separated by synchronization, core frequency, OS scheduling issues
(oversubscriptions, noise, ...)

* Transfer: actual data transfer, MPI internal implementation issues
(progression engine), network contention, yield policy, OS scheduling issues

* Dig down into actual causes

* Further Model detail to characterize application
* Computational efficiencies

* Detailed trace analysis

Application characterization

Efficiencies: ~(0,1]
Multiplicative model

Global
Efficiency

— T~

009

emT T . Tl Computation Parallel
; Other architectural y Efficienc Efficienc
o effects ! Icl y Ic y
. Instruction o
IPC scaling Frequency I Load Bal Communication
Efficienc Efficiency scaling oad Balance Efficienc
Y Efficiency Y

Sharing
effects

SM Synchronization

Code replication

Serialization
Efficiency

Transfer Efficiency

Interested in approaches to address KA

 Specific proposals for each POP customer

-@-Load balance @ Transfer -4 Serialization -%- Parallel efficiency

'3 A r —2 —
OO 55 Sl S it b S NS R i Nl
B x Roe N g
E N x', % m !:_.‘
w0 %--- X X
%

Code/use case

e Generic mechanism useful in many cases (Developed @BSC)

 Taskified MPIl + OpenMP (OmpSs) +
* + Dynamic Load Balance library
* + MPI+OpenMP/OmpSs interoperability library

Further material 00 Y

* Follow the “Learning material” link within our web page
https://www.pop-coe.eu

0 Performance Optimisation and Productivity
A Centre of Excellence in Computing Applications

00

Contact: ey
https://www.pop-coe.eu Qi
mailto:pop@bsc.es T

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553.

