
1

Guided Performance Analysis and
Optimization using MAQAO

Performance Evaluation Team, University of Versailles
http://www.maqao.org

MAQAO Performance Analysis and
Optimization Tool

http://www.maqao.org/

2

Performance Analysis and Optimisation

 How much of an application can be optimized?

 Where are the bottlenecks?
• Data accesses, computations, I/O, ...

 Why is the application spending time there?
• Algorithm, implementation or hardware?

 How can the situation be improved?
• In which step(s) of the design process?
• What additional information is needed?

MAQAO Performance Analysis and
Optimization Tool

Algorithm

Implementation

Source Code Parallelisation

Compilation

Execution

3

Motivating Example

MAQAO Performance Analysis and
Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

Code of a loop representing ~10% walltime

Source code and associated issues:

 do j = ni + nvalue1, nato

 nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1
 u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)
 rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)
 rij = demi*(rvwi + rvwalc1(j))
 drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)
 Eq = qq1*qq(j)*drtest
 ntj = nti + ntype(j)
 Ed = ceps(ntj)*drtest2*drtest2*drtest2
 Eqc = Eqc + Eq ; Ephob = Ephob + Ed
 gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2
 u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE
 g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g
 gr(nj1, thread_num) = gr(nj1, thread_num) + u1g
 gr(nj2, thread_num) = gr(nj2, thread_num) + u2g
 gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

 end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses

1)
 H

ig
h

nu
m

be
r o

f s
ta

te
m

en
ts

4

MAQAO:
 Modular Assembly Quality Analyzer and Optimizer

 Objectives:
• Characterizing performance of HPC applications
• Focusing on performance at the core level
• Guiding users through optimization process
• Estimating return of investment (R.O.I.)

 Characteristics:
• Modular tool offering complementary views
• Support for Intel x86-64 and Xeon Phi
• LGPL3 Open Source software
• Developed at UVSQ since 2004
• Binary release available as static executable

 www.maqao.org

MAQAO Performance Analysis and
Optimization Tool

http://www.maqao.org/

5

Success stories:
Optimization of Industrial and Academic HPC Applications

 QMC=CHEM (IRSAMC)
• Quantum chemistry simulation
• Speedup: > 3x

 Moved invocation of function with identical parameters out of loop body
 Yales2 (CORIA)

• Computational fluid dynamics
• Speedup: up to 2,8x

 IF removal for better vectorisation
 Removed double structure indirections

 Polaris (CEA)
• Molecular dynamics
• Speedup: 1,5x – 1,7x

 Enforced loop vectorisation through compiler directives
 AVBP (CERFACS)

• Computational fluid dynamics
• Speedup: 1,08x – 1,17x

 Replaced division with multiplication by reciprocal
 Complete unrolling of loops with small number of iterations

MAQAO Performance Analysis and
Optimization Tool

6

Partnerships

 MAQAO is funded by the UVSQ, Intel, and CEA (French department
of energy) through Exascale Computing Research (ECR) and the
French Ministry of Industry under various FUI/ITEA projects (H4H,
COLOC, PerfCloud, ELCI, MB3, etc...)

 Provides core technology to be integrated with other tools:
• TAU performance tools with MADRAS patcher through MIL

(MAQAO Instrumentation Language)
• ATOS bullxprof with MADRAS through MIL
• Intel Advisor
• INRIA Bordeaux HWLOC

MAQAO Performance Analysis and
Optimization Tool

7

Analysis at Binary Level

 What You Analyze Is What You Run
 Advantages of binary analysis:

• Compiler optimizations increase the distance between the
executed code and the source code

• Source code instrumentation may prevent the compiler from
applying some transformations

 Main steps:
• Reconstruct the program structure
• Relate the analyses to source code using debug symbols

 A single source loop can be compiled as multiple assembly loops
 Affecting unique identifiers to loops

MAQAO Performance Analysis and
Optimization Tool

Loop
L255@file.c

Loop
L255@file.c

Loop 1Loop 1 Loop 2Loop 2 Loop 3Loop 3

Loop 4Loop 4

Loop 5Loop 5

Peel/Prolog

Main

Tail/Epilog

ASM

Source

8

MAQAO Main Features/Modules

 Binary layer
• Builds internal representation from a binary file
• Allows patching through binary rewriting

 Profiling
• LProf: Lightweight sampling-based Profiler
• VProf: Instrumentation-based Value Profiler

 Static analysis
• CQA (Code Quality Analyzer): Evaluates the quality of the assembly

code and offers hints for improvements
• UFS (Uops Flow Simulator): Cycle-accurate CPU simulator

 Dynamic analysis
• DECAN (DECremental ANalyzer): Modifies the application to evaluate

the impact of groups of instructions on performance
 Performance view aggregation module

• ONE View: Invokes the modules and produces reports aggregating their
results

MAQAO Performance Analysis and
Optimization Tool

9

MAQAO Main Structure

MAQAO Performance Analysis and
Optimization Tool

DisassemblyDisassembly

Application

AnalysisAnalysis

Lua APILua API

PatchingPatching

LProf

CQA
Internal

Representation

+ Sampling+ Sampling

+ Machine
model

+ Machine
model

ONE View

Reports
Loop 42 50%
vectorised
Potential x1.2
speedup

VProf

DECAN

10

MAQAO Methodology

MAQAO Performance Analysis and
Optimization Tool

ProfilingProfiling

Loops/functions of interestLoops/functions of interest

AnalysisAnalysis

CPU orientedCPU oriented

Code Quality AnalysisCode Quality Analysis

Value ProfilingValue Profiling

Differential analysisDifferential analysis

Memory orientedMemory oriented

Memory behaviour
characterization

Memory behaviour
characterization

Differential analysisDifferential analysis

11

MAQAO LProf: Lightweight Profiler

 Goal: Lightweight detection of application hotspots

 Features:
• Sampling based
• Access to hardware counters for additional information
• Results at function and loop granularity

 Strengths:
• Non intrusive: No recompilation necessary
• Low overhead
• Agnostic with regard to parallel runtime

MAQAO Performance Analysis and
Optimization Tool

12

MAQAO CQA: Code Quality Analyzer

 Goal: Assist developers in improving
code performance

 Features:
• Evaluates the quality of the

compiler generated assembly code
• Returns hints and workarounds to

improve quality
• Focuses on loops

 In HPC most of the time is spent in
loops

• Targets compute-bound codes
 Static analysis:

• Requires no execution of the
application

• Allows cross-analysis

MAQAO Performance Analysis and
Optimization Tool

13

MAQAO CQA Main Concepts

 Most of the time applications only exploit at best 5% to 10% of the
peak performance

 Concepts:
• Peak performance
• Execution pipeline
• Resources/Functional units

 Key performance levers for core level efficiency:
• Vectorization
• Avoid high latency instructions if possible
• Guide the compiler to generate an efficient code
• Reorganize memory layout

MAQAO Performance Analysis and
Optimization Tool

Same instruction – Same cost

Process up to
8X (SP) data

14

MAQAO CQA Application to Motivating Example

MAQAO Performance Analysis and
Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar

Issues identified by CQA

CQA can detect and provide hints to
resolve most of the identified issues:

 do j = ni + nvalue1, nato

 nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1
 u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)
 rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)
 rij = demi*(rvwi + rvwalc1(j))
 drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)
 Eq = qq1*qq(j)*drtest
 ntj = nti + ntype(j)
 Ed = ceps(ntj)*drtest2*drtest2*drtest2
 Eqc = Eqc + Eq ; Ephob = Ephob + Ed
 gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2
 u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE
 g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g
 gr(nj1, thread_num) = gr(nj1, thread_num) + u1g
 gr(nj2, thread_num) = gr(nj2, thread_num) + u2g
 gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

 end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses

1)
 H

ig
h

nu
m

be
r o

f s
ta

te
m

en
ts

7)
 V

ec
to

r v
s

sc
al

ar

15

MAQAO CQA: Code Quality Analyzer
Application to motivating example

MAQAO Performance Analysis and
Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar

16

MAQAO DECAN: Decremental Analysis

 Goal: modify the application to
• Identify the cause of bottlenecks
• Estimate associated ROI

 Differential analysis:
• Targets innermost loops
• Transforms loops
• Compare performance of original and transformed variant

 Transformations
• Remove or modify groups of instructions
• Targets memory accesses or computation

MAQAO Performance Analysis and
Optimization Tool

17

MAQAO DECAN Transformations

 Typical transformations:

• FP: only FP arithmetic instructions are preserved
 => loads and stores are removed

• LS: only loads and stores are preserved
 => compute instructions are removed

• DL1: memory references replaced with global variables ones
 => data now accessed from L1

MAQAO Performance Analysis and
Optimization Tool

18

MAQAO DECAN Example

MAQAO Performance Analysis and
Optimization Tool

 FP LS

 REF

19

MAQAO DECAN FP and LS Transformations

 ROI = FP / LS = 4,1
 Imbalance between the two streams

=> Try to consume more elements inside one iteration.

MAQAO Performance Analysis and
Optimization Tool

20

MAQAO DECAN
Application to Motivating Example

MAQAO Performance Analysis and
Optimization Tool

REF_NSD : removing DIV/SQRT instructions provides a 1.5 x speedup
 => the bottleneck is the presence of these DIV/SQRT instructions

FPLS_NSD : removing loads/stores after DIV/SQRT provides a small additional speedup
Conclusion: No room left for improvement here (algorithm bound)

DIV/SQRT
instruction
s removed

Loads/stores +
DIV/SQRT instructions
removed

Best_estimated REF FP LS REF_NSD FPIS_NSD
0

10

20

30

40

50

Execution time

Execution time

Variants

C
yc

le
s

pe
r s

ou
rc

e
ite

ra
tio

ns

21

MAQAO VProf: Value Profiling

 Value profiling
• Targets loops or functions
• Instrumentation based
• Iteration count, loop paths, function parameters, …

 Metrics
• Detection of stable values
• Loop characterisation through the number of iterations

 Provides insights and leads for code specialization

MAQAO Performance Analysis and
Optimization Tool

22

MAQAO ONE View: Performance View Aggregator

 Goal: Automating the whole analysis process
• Invocation of the required MAQAO modules
• Generation of aggregated performance views as HTML or

XLS files

MAQAO Performance Analysis and
Optimization Tool

MAQAO analysis modules

ONE-View

Configuration
file

Application

LProf VProf DECAN CQA

Reports

23

MAQAO ONE View: Performance View Aggregator

 Main steps:
• Invokes LProf to identify hotspots
• Invokes CQA, VPROF and DECAN

on loop hotspots
 Available results:

• Speedup predictions
• Global code quality metrics
• Hints for improving performance
• Detailed analyses results
• Parallel efficiency

MAQAO Performance Analysis and
Optimization Tool

24

ONE View Reports Levels

 ONE VIEW ONE
• Requires a single run of the application
• Profiling of the application using LProf
• Static analysis using CQA

 ONE VIEW TWO (includes analyses from report ONE)
• Requires 3 or 4 runs on average
• Value profiling using VProf to identify loop iteration count
• Decremental analysis for L1 projection using DECAN

 ONE VIEW THREE (includes analyses from report TWO)
• Requires 20 to 30 runs
• Decremental analyses using all DECAN variants
• Collects hardware performance events

 Scalability
• Requires as many additional runs as parallel configurations
• Can be executed in addition to another report
• Profilings using LProf on different parallel configurations

MASCOTS 2019 - MAQAO Performance
Analysis and Optimization Tool

25

ONE View Global Metrics

 Global metrics
• General quality metrics derived from MAQAO analyses
• Global speedup predictions

 Potential speedups
• Speedup prediction depending on the number of optimised

loops
• Ordered speedups to identify the loops to optimise in priority

 LProf provides coverage of the loops

 CQA and DECAN provide speedup estimation for loops
• Speedup if loop vectorised or without address computation
• All data in L1 cache

MAQAO Performance Analysis and
Optimization Tool

26

MAQAO ONE View Loop Analysis Report

High level reports
 Reference to the source code
 Bottleneck description
 Hints for improving

performance
 Reports categorized by

probability that applying hints
will yield predicted gain
• Gain: Good probability
• Potential gain: Average

probability
• Hints: Lower probability

MAQAO Performance Analysis and
Optimization Tool

27

MAQAO ONE View Scalability Reports

 Goal: Provide a view of the application scalability
• Profiles with different numbers of threads/processes
• Displays efficiency metrics for application

MAQAO Performance Analysis and
Optimization Tool

28

MAQAO ONE View Scalability Reports
Application View

 Coverage per category
• Comparison of categories for each run

 Coverage per parallel efficiency

 Distinguishing functions only represented in parallel or sequential
• Displays efficiency by coverage

MAQAO Performance Analysis and
Optimization Tool

29

More on MAQAO

 MAQAO website: www.maqao.org
• Documentation: www.maqao.org/documentation.html

 Tutorials for ONE View, LProf and CQA
 Lua API documentation

• Latest release: http://www.maqao.org/downloads.html
 Binary releases (2-3 per year)
 Core sources

• Publications around MAQAO:
http://www.maqao.org/publications.html

MAQAO Performance Analysis and
Optimization Tool

http://www.maqao.org/
http://www.maqao.org/documentation.html
http://www.maqao.org/downloads.html
http://www.maqao.org/publications.html

30

MAQAO Team and Collaborators

 MAQAO Team
• Prof. William Jalby
• Cédric Valensi, Ph D
• Emmanuel Oseret, Ph D
• Mathieu Tribalat
• Salah J. Ibnamar
• Kévin Camus

 Collaborators
• Prof. David J. Kuck
• Eric Petit, Ph D
• Pablo de Oliveira, Ph D
• David Wong, Ph D
• Othman Bouizi, Ph D
• Andrés S. Charif-Rubial, Ph D

 Past Collaborators/Team members
• Prof. Denis Barthou
• Jean-Thomas Acquaviva, Ph D
• Stéphane Zuckerman, Ph D
• Julien Jaeger, Ph D
• Souad Koliaï, Ph D
• Zakaria Bendifallah, Ph D
• Tipp Moseley, Ph D
• Jean-Christophe Beyler, Ph D
• Hugo Bolloré
• Jean-Baptiste Le Reste
• Sylvain Henry, Ph D
• José Noudohouennou, Ph D
• Aleksandre Vardoshvili
• Romain Pillot
• Youenn Lebras

MAQAO Performance Analysis and
Optimization Tool

31

Thanks for your attention!

MAQAO Performance Analysis and
Optimization Tool

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

