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Guided Performance Analysis and 
Optimization using MAQAO

Performance Evaluation Team, University of Versailles
http://www.maqao.org

MAQAO Performance Analysis and 
Optimization Tool
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Performance Analysis and Optimisation

 How much of an application can be optimized?

 Where are the bottlenecks?
• Data accesses, computations, I/O, ...

 Why is the application spending time there?
• Algorithm, implementation or hardware?

 How can the situation be improved?
• In which step(s) of the design process?
• What additional information is needed?

MAQAO Performance Analysis and 
Optimization Tool
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Motivating Example

MAQAO Performance Analysis and 
Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

Code of a loop representing ~10% walltime

Source code and associated issues:

     do j = ni + nvalue1, nato

              nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1
              u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)
              rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)
              rij = demi*(rvwi + rvwalc1(j))
              drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)
              Eq = qq1*qq(j)*drtest
              ntj = nti + ntype(j)
              Ed = ceps(ntj)*drtest2*drtest2*drtest2
              Eqc = Eqc + Eq ; Ephob = Ephob + Ed
              gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2
              u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE
              g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g
              gr(nj1, thread_num) = gr(nj1, thread_num) + u1g
              gr(nj2, thread_num) = gr(nj2, thread_num) + u2g
              gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

     end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses
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MAQAO:
 Modular Assembly Quality Analyzer and Optimizer

 Objectives:
• Characterizing performance of HPC applications
• Focusing on performance at the core level
• Guiding users through optimization process
• Estimating return of investment (R.O.I.)

 Characteristics:
• Modular tool offering complementary views
• Support for Intel x86-64 and Xeon Phi
• LGPL3 Open Source software
• Developed at UVSQ since 2004
• Binary release available as static executable

 www.maqao.org

MAQAO Performance Analysis and 
Optimization Tool

http://www.maqao.org/
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Success stories:
Optimization of Industrial and Academic HPC Applications

 QMC=CHEM (IRSAMC)
• Quantum chemistry simulation
• Speedup: > 3x

 Moved invocation of function with identical parameters out of loop body 
 Yales2 (CORIA)

• Computational fluid dynamics 
• Speedup: up to 2,8x

 IF removal for better vectorisation
 Removed double structure indirections 

 Polaris (CEA)
• Molecular dynamics
• Speedup: 1,5x – 1,7x

 Enforced loop vectorisation through compiler directives
 AVBP (CERFACS)

• Computational fluid dynamics 
• Speedup: 1,08x – 1,17x

 Replaced division with multiplication by reciprocal
 Complete unrolling of loops with small number of iterations

MAQAO Performance Analysis and 
Optimization Tool
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Partnerships

 MAQAO is funded by the UVSQ, Intel, and CEA (French department 
of energy) through Exascale Computing Research (ECR) and the 
French Ministry of Industry under various FUI/ITEA projects (H4H, 
COLOC, PerfCloud, ELCI, MB3, etc...)

 Provides core technology to be integrated with other tools:
• TAU performance tools with MADRAS patcher through MIL 

(MAQAO Instrumentation Language) 
• ATOS bullxprof with MADRAS through MIL
• Intel Advisor
• INRIA Bordeaux HWLOC

MAQAO Performance Analysis and 
Optimization Tool
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Analysis at Binary Level

 What You Analyze Is What You Run
 Advantages of binary analysis:

• Compiler optimizations increase the distance between the 
executed code and the source code

• Source code instrumentation may prevent the compiler from 
applying some transformations

 Main steps:
• Reconstruct the program structure
• Relate the analyses to source code using debug symbols

 A single source loop can be compiled as multiple assembly loops
 Affecting unique identifiers to loops

MAQAO Performance Analysis and 
Optimization Tool

Loop
L255@file.c

Loop
L255@file.c

Loop 1Loop 1 Loop 2Loop 2 Loop 3Loop 3

Loop 4Loop 4

Loop 5Loop 5

Peel/Prolog

Main

Tail/Epilog

ASM

Source
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MAQAO Main Features/Modules

 Binary layer
• Builds internal representation from a binary file
• Allows patching through binary rewriting

 Profiling
• LProf: Lightweight sampling-based Profiler
• VProf: Instrumentation-based Value Profiler

 Static analysis
• CQA (Code Quality Analyzer): Evaluates the quality of the assembly 

code and offers hints for improvements
• UFS (Uops Flow Simulator): Cycle-accurate CPU simulator

 Dynamic analysis
• DECAN (DECremental ANalyzer): Modifies the application to evaluate 

the impact of groups of instructions on performance
 Performance view aggregation module

• ONE View: Invokes the modules and produces reports aggregating their 
results

MAQAO Performance Analysis and 
Optimization Tool
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MAQAO Main Structure

MAQAO Performance Analysis and 
Optimization Tool

DisassemblyDisassembly

Application

AnalysisAnalysis

Lua APILua API

PatchingPatching

LProf

CQA
Internal 

Representation

+ Sampling+ Sampling

+ Machine 
model

+ Machine 
model

ONE View

Reports
Loop 42 50% 
vectorised
Potential x1.2 
speedup

VProf

DECAN
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MAQAO Methodology

MAQAO Performance Analysis and 
Optimization Tool

ProfilingProfiling

Loops/functions of interestLoops/functions of interest

AnalysisAnalysis

CPU orientedCPU oriented

Code Quality AnalysisCode Quality Analysis

Value ProfilingValue Profiling

Differential analysisDifferential analysis

Memory orientedMemory oriented

Memory behaviour 
characterization

Memory behaviour 
characterization

Differential analysisDifferential analysis
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MAQAO LProf: Lightweight Profiler

 Goal: Lightweight detection of application hotspots

 Features:
• Sampling based
• Access to hardware counters for additional information
• Results at function and loop granularity

 Strengths:
• Non intrusive: No recompilation necessary
• Low overhead
• Agnostic with regard to parallel runtime

MAQAO Performance Analysis and 
Optimization Tool
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MAQAO CQA: Code Quality Analyzer

 Goal: Assist developers in improving 
code performance

 Features:
• Evaluates the quality of the 

compiler generated assembly code
• Returns hints and workarounds to 

improve quality
• Focuses on loops

 In HPC most of the time is spent in 
loops

• Targets compute-bound codes 
 Static analysis:

• Requires no execution of the 
application

• Allows cross-analysis

MAQAO Performance Analysis and 
Optimization Tool
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MAQAO CQA Main Concepts

 Most of the time applications only exploit at best 5% to 10% of the 
peak performance

 Concepts:
• Peak performance
• Execution pipeline
• Resources/Functional units

 Key performance levers for core level efficiency:
• Vectorization
• Avoid high latency instructions if possible
• Guide the compiler to generate an efficient code
• Reorganize memory layout

MAQAO Performance Analysis and 
Optimization Tool

Same instruction – Same cost

Process up to 
8X (SP) data
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MAQAO CQA Application to Motivating Example

MAQAO Performance Analysis and 
Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar

Issues identified by CQA 

CQA can detect and provide hints to 
resolve most of the identified issues:

     do j = ni + nvalue1, nato

              nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1
              u1 = x11 – x(nj1) ; u2 = x12 – x(nj2) ; u3 = x13 – x(nj3)
              rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)
              rij = demi*(rvwi + rvwalc1(j))
              drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)
              Eq = qq1*qq(j)*drtest
              ntj = nti + ntype(j)
              Ed = ceps(ntj)*drtest2*drtest2*drtest2
              Eqc = Eqc + Eq ; Ephob = Ephob + Ed
              gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2
              u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE
              g1c = g1c –u1g ; g2c = g2c – u2g ; g3c = g3c –u3g
              gr(nj1, thread_num) = gr(nj1, thread_num) + u1g
              gr(nj2, thread_num) = gr(nj2, thread_num) + u2g
              gr(nj3, thread_num) = gr(nj3, thread_num) + u3g

     end do

6) Variable number of iterations

2) Non-unit stride accesses

4) DIV/SQRT

3) Indirect accesses

5) Reductions

2) Non-unit stride accesses
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MAQAO CQA: Code Quality Analyzer
Application to motivating example

MAQAO Performance Analysis and 
Optimization Tool

1) High number of statements

2) Non-unit stride accesses

3) Indirect accesses

4) DIV/SQRT

5) Reductions

6) Variable number of iterations

7) Vector vs scalar
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MAQAO DECAN: Decremental Analysis

 Goal: modify the application to
• Identify the cause of bottlenecks
• Estimate associated ROI

 Differential analysis: 
• Targets innermost loops
• Transforms loops
• Compare performance of original and transformed variant

 Transformations
• Remove or modify groups of instructions
• Targets memory accesses or computation

MAQAO Performance Analysis and 
Optimization Tool
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MAQAO DECAN Transformations

 Typical transformations:

• FP: only FP arithmetic instructions are preserved
 => loads and stores are removed

• LS: only loads and stores are preserved
 => compute instructions are removed

• DL1: memory references replaced with global variables ones
 => data now accessed from L1

MAQAO Performance Analysis and 
Optimization Tool
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MAQAO DECAN Example

MAQAO Performance Analysis and 
Optimization Tool

   FP                   LS

          REF
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MAQAO DECAN FP and LS Transformations

 ROI = FP / LS = 4,1
 Imbalance between the two streams 

=> Try to consume more elements inside one iteration.

MAQAO Performance Analysis and 
Optimization Tool
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MAQAO DECAN
Application to Motivating Example

MAQAO Performance Analysis and 
Optimization Tool

REF_NSD   : removing DIV/SQRT instructions provides a 1.5 x speedup 
         => the bottleneck is the presence of these DIV/SQRT instructions

FPLS_NSD : removing loads/stores after DIV/SQRT provides a small additional speedup
Conclusion: No room left for improvement here (algorithm bound)
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MAQAO VProf: Value Profiling 

 Value profiling
• Targets loops or functions
• Instrumentation based
• Iteration count, loop paths, function parameters, …

 Metrics
• Detection of stable values
• Loop characterisation through the number of iterations

 Provides insights and leads for code specialization

MAQAO Performance Analysis and 
Optimization Tool
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MAQAO ONE View: Performance View Aggregator

 Goal: Automating the whole analysis process
• Invocation of the required MAQAO modules
• Generation of aggregated performance views as HTML or 

XLS files

MAQAO Performance Analysis and 
Optimization Tool

MAQAO analysis modules

ONE-View

Configuration 
file

Application

LProf VProf DECAN CQA

Reports
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MAQAO ONE View: Performance View Aggregator

 Main steps:
• Invokes LProf to identify hotspots
• Invokes CQA, VPROF and DECAN  

on loop hotspots
 Available results:

• Speedup predictions
• Global code quality metrics 
• Hints for improving performance
• Detailed analyses results
• Parallel efficiency

MAQAO Performance Analysis and 
Optimization Tool
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ONE View Reports Levels

 ONE VIEW ONE
• Requires a single run of the application
• Profiling of the application using LProf
• Static analysis using CQA

 ONE VIEW TWO (includes analyses from report ONE)
• Requires 3 or 4 runs on average
• Value profiling using VProf to identify loop iteration count
• Decremental analysis for L1 projection using DECAN 

 ONE VIEW THREE (includes analyses from report TWO)
• Requires 20 to 30 runs 
• Decremental analyses using all DECAN variants 
• Collects hardware performance events

 Scalability
• Requires as many additional runs as parallel configurations
• Can be executed in addition to another report
• Profilings using LProf on different parallel configurations

MASCOTS 2019 - MAQAO Performance 
Analysis and Optimization Tool
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ONE View Global Metrics

 Global metrics
• General quality metrics derived from MAQAO analyses
• Global speedup predictions

 Potential speedups 
• Speedup prediction depending on the number of optimised 

loops
• Ordered speedups to identify the loops to optimise in priority

 LProf provides coverage of the loops

 CQA and DECAN provide speedup estimation for loops
• Speedup if loop vectorised or without address computation
• All data in L1 cache

MAQAO Performance Analysis and 
Optimization Tool
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MAQAO ONE View Loop Analysis Report

High level reports
 Reference to the source code
 Bottleneck description
 Hints for improving 

performance
 Reports categorized by 

probability that applying hints 
will yield predicted gain
• Gain: Good probability
• Potential gain: Average 

probability 
• Hints: Lower probability

MAQAO Performance Analysis and 
Optimization Tool
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MAQAO ONE View Scalability Reports

 Goal: Provide a view of the application scalability
• Profiles with different numbers of threads/processes
• Displays efficiency metrics for application

MAQAO Performance Analysis and 
Optimization Tool
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MAQAO ONE View Scalability Reports 
Application View

 Coverage per category
• Comparison of categories for each run 

 Coverage per parallel efficiency

 Distinguishing functions only represented in parallel or sequential
• Displays efficiency by coverage

MAQAO Performance Analysis and 
Optimization Tool



29

More on MAQAO

 MAQAO website: www.maqao.org
• Documentation: www.maqao.org/documentation.html

 Tutorials for ONE View, LProf and CQA
 Lua API documentation

• Latest release: http://www.maqao.org/downloads.html
 Binary releases (2-3 per year)
 Core sources

• Publications around MAQAO: 
http://www.maqao.org/publications.html

MAQAO Performance Analysis and 
Optimization Tool

http://www.maqao.org/
http://www.maqao.org/documentation.html
http://www.maqao.org/downloads.html
http://www.maqao.org/publications.html
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MAQAO Team and Collaborators

 MAQAO Team
• Prof. William Jalby
• Cédric Valensi, Ph D
• Emmanuel Oseret, Ph D
• Mathieu Tribalat
• Salah J. Ibnamar
• Kévin Camus

 Collaborators
• Prof. David J. Kuck
• Eric Petit, Ph D
• Pablo de Oliveira, Ph D
• David Wong, Ph D
• Othman Bouizi, Ph D
• Andrés S. Charif-Rubial, Ph D

 Past Collaborators/Team members
• Prof. Denis Barthou
• Jean-Thomas Acquaviva, Ph D
• Stéphane Zuckerman, Ph D
• Julien Jaeger, Ph D
• Souad Koliaï, Ph D
• Zakaria Bendifallah, Ph D
• Tipp Moseley, Ph D
• Jean-Christophe Beyler, Ph D
• Hugo Bolloré
• Jean-Baptiste Le Reste
• Sylvain Henry, Ph D
• José Noudohouennou, Ph D
• Aleksandre Vardoshvili
• Romain Pillot
• Youenn Lebras

MAQAO Performance Analysis and 
Optimization Tool
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Thanks for your attention!

MAQAO Performance Analysis and 
Optimization Tool
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