Exascale o0

4

Guided Performance Analysis and
Optimization using MAQAO

Performance Evaluation Team, University of Versailles

http://www.maqao.org/

ExascalecoO Performance Analysis and Optimisation @

compuiting resegrch

4

» How much of an application can be optimized?

» Where are the bottlenecks?
* Data accesses, computations, I/O, ... | Algorithm

1

» Why is the application spending time there?
* Algorithm, implementation or hardware?

» How can the situation be improved? *

In which step(s) of the design process? 1
* What additional information is needed?

‘ Execution ‘

MAQAQ Performance Analysis and
Optimization Tool

Exascale oo

Motivating Example @

4

Code of a loop representing ~10% walltime

1) High number of statements

/ 6) Variable number of iterations

2) Non-unit stride accesses

do i = ni + nvalue1, nato

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluéJ

ul =x11 —x(nj1) ; u2 = x12 — x(nj2) ; u3 = x13 — x(nj3)

rtest2 = u1*ul + u2*u2 + u3*u3 ; cnij = eci*quIdQ)\

fij = demi*(rvwi + rvwalc1(j)) 4) DIV/SQRT
drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq17qq(j)*drtest +———— 3) Indirect accesses
ntj = nti + ntype(j)
Ed = ceps(ntj)*drtest2*drtest2*drtest2 5) Reductions

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6"Ed + Eq)*drtest2 ; virt = virt + gE*rtest2
ulg=ul*gE ; u2g = u2*gE ; u3g = u3*gE
glc=glc—-ulg;g2c =g2c —u2g ; g3c = g3c —u3
gr(nj1, thread_num) = gr(nj1, thread_num) + ulg
gr(nj2, thread_num) = gr(nj2, thread_num) + u2

gr(nj3, thread_num) = gr(nj3, thread_nur% N (L)Jr%_qmit stride accesses

end do

Source code and associated issues:

a b~ WO N =

)
)
)
)
)
)

D

High number of statements
Non-unit stride accesses
Indirect accesses
DIV/SQRT

Reductions

Variable number of iterations

Exascale oo MAQAO:
Aﬁ] oo Modular Assembly Quality Analyzer and Optimizer

> Objectives:
* Characterizing performance of HPC applications
* Focusing on performance at the core level
* Guiding users through optimization process
* Estimating return of investment (R.O.l.)

> Characteristics: bV &4 “‘\‘@\ - s
* Modular tool offering complementary views
* Support for Intel x86-64 and Xeon Phi
* LGPL3 Open Source software
* Developed at UVSQ since 2004
* Binary release available as static executable

http://www.maqao.org/

Exascaleoo Success stories: @

: computing resear Optimization of Industrial and Academic HPC Applications

» QMC=CHEM (IRSAMC)
* Quantum chemistry simulation
* Speedup: > 3x
" Moved invocation of function with identical parameters out of loop body
> Yales2 (CORIA)
* Computational fluid dynamics
* Speedup: up to 2,8x
" |IF removal for better vectorisation
" Removed double structure indirections

» Polaris (CEA)
* Molecular dynamics
* Speedup: 1,5x — 1,7x
" Enforced loop vectorisation through compiler directives
» AVBP (CERFACS)
* Computational fluid dynamics
* Speedup: 1,08x —1,17x
" Replaced division with multiplication by reciprocal

" Complete unrolling of loops with small number of iterations

EXGSCGIE o0 Partnerships @

4

» MAQAO is funded by the UVSQ, Intel, and CEA (French department
of energy) through Exascale Computing Research (ECR) and the
French Ministry of Industry under various FUI/ITEA projects (H4H,
COLOC, PerfCloud, ELCI, MB3, etc...)

UNIVERSITE DE @"Wé

VERSAILLES s (i)
ST-QUENTIN-EN-YVELINES l n tel

[]
universite paris-sAcLAY

> Provides core technology to be integrated with other tools:

* TAU performance tools with MADRAS patcher through MIL
(MAQAO Instrumentation Language)

* ATOS bullxprof with MADRAS through MIL
* Intel Advisor
* INRIA Bordeaux HWLOC

EXGSCGIE 0 Analysis at Binary Level @

4

» What You Analyze Is What You Run
» Advantages of binary analysis:

* Compiler optimizations increase the distance between the
executed code and the source code

* Source code instrumentation may prevent the compiler from
applying some transformations

> Main steps:
* Reconstruct the program structure
* Relate the analyses to source code using debug symbols

" A single source loop can be compiled as multiple assembly loops
" Affecting unique identifiers to loops

Loop
L255@file.c } Source

=

. Peel/Prolog

. Main

| Tail/Epilog

~ ASM

EXGSCQ’E o0 MAQAO Main Features/Modules @

4

» Binary layer
* Builds internal representation from a binary file
* Allows patching through binary rewriting
> Profiling
* LProf: Lightweight sampling-based Profiler
* VProf: Instrumentation-based Value Profiler
» Static analysis

* CQA (Code Quality Analyzer): Evaluates the quality of the assembly
code and offers hints for improvements

* UFS (Uops Flow Simulator): Cycle-accurate CPU simulator
» Dynamic analysis

* DECAN (DECremental ANalyzer): Modifies the application to evaluate
the impact of groups of instructions on performance

» Performance view aggregation module

* ONE View: Invokes the modules and produces reports aggregating their
results

Exascale o0

MAQAO Main Structure @

]

"'"'"'I‘|' ."""'r"\ "‘\(
: * - |

Application

Disassembly J

\ 4

Analysis

Internal

Representation

Lua API

k Patching J‘

g COA pu
+ Machine
model

Reports

Loop 42 50%
vectorised
Potential x1.2
speedup

Exascale o0 MAQAO Methodology (€©)

4

/ CPU oriented

Profiling
‘ Code Quality Analysis

Loops/functions of interest Differential analysis

‘ \ Value Profiling J
/

Analysis —

Memory oriented

Memory behaviour
characterization y

N

Differential analysis

k J

10

Exascale oo MAQAO LProf: Lightweight Profiler (€)

4

» Goal: Lightweight detection of application hotspots

» Features:
* Sampling based
* Access to hardware counters for additional information
* Results at function and loop granularity

» Strengths:
* Non intrusive: No recompilation necessary
* Low overhead
* Agnostic with regard to parallel runtime

11

EXGSCGIE oo MAQAO CQA: Code Quality Analyzer

» Goal: Assist developers in improving
code performance

> Features:

* Evaluates the quality of the
compiler generated assembly code

* Returns hints and workarounds to
improve quality

* Focuses on loops

" In HPC most of the time is spent in
loops

* Targets compute-bound codes
» Static analysis:

* Requires no execution of the
application

* Allows cross-analysis

12

tatic Reports

¥ CQA Report
The loop is defined in /tmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/z_solve f:415-423

¥ Path 1

2% of peak computational performance is used (0.77 out of 32.00 FLOP per cycle (GFLOPS @ 1GHz))
[gain | potential | hint | expert

Code clean check

Detected a slowdown caused by scalar integer instructions (typically used for address computation). By removing
them, you can lower the cost of an iteration from 65.00 to 57.00 cycles (1.14x speedup)

Workaround

« Try to reorganize arrays of structures to structures of arrays

« Consider to permute loops (see vectorization gain report)

« To reference allocatable arrays, use "allocatable” instead of "pointer” pointers or qualify them with the
"contiguous” attribute (Fortran 2008)

« For structures, limit to one indirection. For example, use a_b%c instead of a%b%c with a_b set to a%b
before this loop

Your loop is not vectorized. 8 data elements could be processed at once in vector registers. By vectorizing your
loop, you can lower the cost of an iteration from 65.00 to 8.12 cycles (8.00x speedup).

Workaround

* Try another compiler or update/tune your current one
o use the vec-report option to understand why your loop was not vectorized. If "existence of vector
dependences”, try the IVDEP directive. If, using IVDEP, "vectorization possible but seems inefficient”,
try the VECTOR ALWAYS directive.
« Remove inter-iterations dependences from your loop and make it unit-stride
o If your arrays have 2 or more dimensions, check whether elements are accessed contiguously and
otherwise, try to permute loops accordingly: Fortran storage order is column-major: do i do j afi,j) =
b(i,j) (slow, non stride 1) => do i do j a(j,i) = b(i,j) (fast, stride 1)
o If your loop streams arrays of structures (AoS), try to use structures of arrays instead (SoA): do i
a(i)%x = b(i)%x (slow, non stride 1) => do i a%x(i) = b%x(i) (fast, stride 1)

Execution units bottlenecks

Found no such bottlenecks but see expert reports for more complex bottlenecks

EXOSCGIE 0 MAQAO CQA Main Concepts @

4

» Most of the time applications only exploit at best 5% to 10% of the
peak performance

> Concepts:
Same instruction — Same cost

* Peak performance FEEEEEER

* Execution pipeline
* Resources/Functional units ========

> Key performance levers for core level efficiency:
* Vectorization
* Avoid high latency instructions if possible
* Guide the compiler to generate an efficient code
* Reorganize memory layout

Process up to
8X (SP) data

13

Exascale oo

MAQAO CQA Application to Motivating Example @

4

Issues identified by CQA

1) High number of statements

do j = ni + nvaluel, nato

/ 6) Variable number of iterations

2) Non-unit stride accesses

nj1 = ndim3d*j + nc ; nj2 = nj1 + nvaluel ; nj3 = nj2 + nvaluéJ
ul =x11 —x(nj1) ; u2 = x12 — x(nj2) ; u3 = x13 — x(nj3)
rtest2 = u1*ul + u2*u2 + u3*u3 ; cnij = eci quId‘l)_
rij = demi*(rvwi + rvwalc1(j))
drtest2 = cnij/(rtest2 + rij) ; drtest =
| Eq = qq1*qq(j)*drtest «—
ntj = nti + ntype(j)
Ed ="ceps(ntj)“drtest2*drtest2*drtest2 }
Eqc = Eqc + Eq ; Ephob = Ephob + Ed
gE = (c6"Ed + Eq)*drtest2 ; virt = virt + gE*rtest2
ulg=ul*gE ; u2g = u2*gE;u3g = u3*gE
glc=glc—ulg;g2c =g2c —u2g ; g3c = g3c —u3
gr(nj1, thread_num) = gr(nj1, thread_num) + ulg
-gr(nj2, thread_num) = gr(nj2, thread_num) + u2
gr(nj3, thread_num) = gr(nj3, thread_nur%

4) DIV/SQRT
sqrt(drtest2)

3) Indirect accesses

5) Reductions

Nlojrq’gmit stride accesses

end do

14

CQA can detect and provide hints to
resolve most of the identified issues:

1) High number of statements

2) Non-unit stride accesses

4) DIV/SQRT
5) Reductions
6) Variable number of iterations

7) Vector vs scalar

Exascale o0

"E"'T}pbh'.l""g researc

MAQAO CQA: Code Quality Analyzer

Application to motivating example

(FGain T potentia gain | rints | Expertsonty |

Vectorization

Your loop is partially vectorized.

Only 28% of vector register length is used (average across all SSE/AVX instructions).

By fully vectorizing your loop, you can lower the cost of an iteration from 57.00 to 21.50 cycles (2.65x speedup).
51% of SSE/AVX instructions are used in vector version (process two or more data elements in vector registers):

® 24% of SSE/AVX loads are used in vector version.
* 0% of SSE/AVX stores are used in vector version.

Since your execution units are vector units, only a fully vectorized loop can use their full power.
Proposed solution(s):

* Try another compiler or update/tune your current one:
o use the vec- repor(option to understand why your Ioop was not vectorized. If "e:

s inefficient”

emaove inter-iterations dependences fmm your loop and make it unit-stride:

istence of vector dependences”, try
, try the VECTOR ALWAYS directive.

permute loops accordingly:
Fortran storage order is column-major: do i do j a{i,j) =
1)

o If your loop streams arrays of structures (AcS), try to use structures of arrays instead (SoA):
do i a(i}ex = b(i)%x (slow, non stride 1) == do i a%x(i) = b%x(i) (fast, stride 1)

bii,j) (slow, non stride 1) => do i do j a(j.i) =

Performance is limited by:

oot operations (the divide/square root unitis a bottleneck)
ector registers (the VPU is a bottleneck)

execution of divide and squa
« execution of INT/FP operations

I Gain I Potential gain | Hints | Experts only

Petected 48 FMA (fused multiply-add) operations
Presence of both ADD,"SUB and MUL operations.

Try to change order in which elements are evaluated (using parentheses) in arithmetic expressions containing both ADD/SUB and
MUL operaticns to enable your compiler to generate FMA instructions wherever possible

For instance a + b*c is a valid FMA (MUL th l o] Potential gain I Hints] T _

However (a+b)* ¢ cannot be translated into
data structures access
ected data structures (typically arrays) that cannot be efficiently read/

= Constant non-unit stride: 1 occurrence(s)
* |mreguiar (variable siride) or indirect. 1 occurrence(s)

1)
2)
3)

High number of statements

Non-unit stride acces

Indirect accesses ¢

By removing all these bottlenecks, you can lower the cost @ gration from 57.00 to 48.00 cycles (1.19x speedup).

Proposed solution(s):

» Reduce the number of division or square root instructions.
If denominator is constant over iterations, use reciprocal (replace x/y with x*(1/y)).
done by your compiler with no-prec-div or Ofast.

Check whether you really need double precision. If not, switch to single precision to speedup execution.

* Reduce arithmetical operations on array elements

grecision impact. This will be

DIV/SQRT

Reductions

4)

6) Variable number of iterations

7) Vector vs scalar

MAQAQ Performance Analysis and

15

Optimization Tool

EanCGIEOﬁ MAQAO DECAN: Decremental Analysis @

4

» Goal: modify the application to
* ldentify the cause of bottlenecks
* Estimate associated ROI

» Differential analysis:
* Targets innermost loops
* Transforms loops
* Compare performance of original and transformed variant

» Transformations
* Remove or modify groups of instructions
* Targets memory accesses or computation

16

EXGSCGIE o0 MAQAO DECAN Transformations @

4

» Typical transformations:

* FP:only FP arithmetic instructions are preserved
" =>loads and stores are removed

* LS: only loads and stores are preserved
" => compute instructions are removed

* DL1: memory references replaced with global variables ones
" => data now accessed from L1

17

Exascaleon

compuiting resegrch

MAQAO DECAN Example (€

404e3d:
404e43:
404e49:
404edc:
404e50:
404e54:
404e59:
404e5c:
404e60:
404e63:
404e67:
404e6b:
404e70:
404e76:
404e7c:

404e7f:

404e83:
404e87:
404eBc:
404e91:
404e94:
404e98:
404e9b:

404e0f:

404ead:
404eaB:
404ead:
404eb2:
404eb7:
‘a04ebb:

404ebf:

404ecs:
404ech:

404ecf:

404ed2:

movaps -0x4(%r r10,4),%xmm3
mov. Oxc(%r9, %I’lﬁ 4 Yoxmm1l

Bxmm
rtorind Yumima 1 a1z
mulpd Y%xmmo,%xmmd

PS Zxmm 3, %xmm 3
movhips %xmm11,%xmmll

FP

LS

cvtps2pd %xmm1l,%xmm13
mulpd %xmm0,%xmm5
mulpd %xmmo, %xmml!

X X
mavlns Oxc(%r8, %rlo.ﬁl).%lmmlu

cutpszpd %xmmlﬂ.%xmmlt
addpd %xmm4,%xmmé
addpd %xmm12,%xmm1d
cvtpd2ps %xmm6,%xmm9
movhips %xmma,%xmm.
movhips %xmm10,%xmm10

P ™2,
cvtps2pd %xmm10,%xmm15
cutpd2ps %xmmld,%xmm2
addpd %xmm5,%xmm7
addpd %xmm13,%xmm1l5
cvtpd2ps Yoxmmy7,%xmm8
mml
movlhps %xmm8,%xmm3
movihps %xmm15.%xmmz2.
Foxmm

cmp %rbp,%r10
jb__ 404e3d <saxpy2_+0x14d>

REF

(ps2pd Sexmim 3, Texmim:
cvtps2pd xmmll,Zexmml2
mulpd %xmmo, %exmmd
mulpd_%xmm0,%xmm12
movhms S e

€vtps2pa Fxmm3. Soxmms
cvtps2pd %xmm1ll,%xmmil3
mulpd %xmm0, %xmmS

cvtps2y b Yo 0, 3xmm 14
addpd %xmm4,%xmmé
HE St e e

el s
addpd %xmm13,%xmmls
evtpd2ps %xmm7.%xmma

mowvihps %xmmB,%xmmg

404ech: [add SOxB.%r10
40dect: | cmp %rbp,%r10
404ed2 jb__a0de3d Py2_+0x1ad

MAQAQ Performance Analysis and
Optimization Tool

404e3d:
4D4ea3:

404e59;
andesc:

a04e91:
a04e94:

4e70:
404e76:

movhips %xmm3,%xmm3
movhips %xmm11,%zmmll

o e e L,
Oxe(%r8,%r10,4) Soxmm10

MoVhips Fexmmz, %xmm2
movhips %xmm10,%xmm10

‘movinps %xmma,%xmmd

Exascale o0 MAQAO DECAN FP and LS Transformations @

: compuiting resegrch

» ROI=FP/LS =4,1

> Imbalance between the two streams
=> Try to consume more elements inside one iteration.

Execution time

wul
(]

=
u

=y
(=]

W
(%]

w
o

[}
[85]

]
o
|

M Execution time

=
o

Cycles per source iteration

[on RNV |

Best_estimated REF FP LS
Variants

MAQAQ Performance Analysis and
19 Optimization Tool

Exascale oo MAQAO DECAN
Aq] Application to Motivating Example \

DIV/SQRT
instruction
s removed

DIV/SQRT instructions
removed

Execution time

| nade/etnrac . ‘
=UVAUAVWD/ DWVIVvVY T

50

40

30

20 m Execution time
oBest_estimated REF FP LS REF_NSD FPIS_NSD

Variants

Cycles per source iterations

REF_NSD : removing DIV/SQRT instructions provides a 1.5 x speedup

=> the bottleneck is the presence of these DIV/SQRT instructions
FPLS_NSD : removing loads/stores after DIV/SQRT provides a small additional speedup
Conclusion: No room left for improvement here (algorithm bound)

20

Exascale oo MAQAO VProf: Value Profiling (€)

4

» Value profiling
* Targets loops or functions
* Instrumentation based
* lteration count, loop paths, function parameters, ...

> Metrics
* Detection of stable values
* Loop characterisation through the number of iterations

> Provides insights and leads for code specialization

21

EXOSCG’E o0 MAQAO ONE View: Performance View Aggregator @

» Goal: Automating the whole analysis process
* Invocation of the required MAQAO modules

* Generation of aggregated performance views as HTML or
XLS files

Configuration
file

B

i]

m-- ~ 28

MAQAO analysis modules Y,

Application

22

EXGSCG!E oo MAQAO ONE View: Performance View Aggregator

cation Functions Loops Topology

Experiment Summary @ | configuration Summary

"
L] Application bin/Btmz C 16
Timestamp 20181009 16:40:15 Rui Command <binary=
N Experiment 1

HNumber Processes
Tvpe Lo e llin Number Hodes 1
i skion intel.eer Number Tasks per
Architecture x86 64 Nodes
Micro OMP_NUM_THRLADS 4
' L] L] Architecture SEYLEKES
Model Name Intel{R) Xcon{R) Platinum 8180 CPU 2 SCGHz
Cache size 19424 KB ©
Number of
ores =
Compilaion DINAN: GNU 7.3.0 ffixed form mtunc=generic marchexst 64 g 03 l
“fopenmp fintrinsic- modules-path Jopt/gnu/gec/7 3.0/Wb/geo/x86_6d-po-

* |nvokes CQA, VPROF and DECA e

Compilatinn Optians.

on loop hotspots ey
> Available results: Y e R ”
* Speedup predictions e ———— |
Global code quality metrics A=
* Hints for improving performance — I
* Detailed analyses results
* Parallel efficiency

Porential
102
Speedup
jctean Nb Laops to G
el 0%
Potential

EPuodtorised SEeEdp

btmz.C.16:._s y-solve_._omp_fn
olve.f 083

Loop btmz.C.163.s x_solve__omp_f
N2 146309 gep n GED
Loop

btmz.C.16:2_5 z_solve__omp_f
146-309 1% z

» Detailed

Function Based Profile

23

EXGSCQ’E 0O ONE View Reports Levels @

4

» ONE VIEW ONE
* Requires a single run of the application
* Profiling of the application using LProf
* Static analysis using CQA
» ONE VIEW TWO (includes analyses from report ONE)
* Requires 3 or 4 runs on average
* Value profiling using VProf to identify loop iteration count
* Decremental analysis for L1 projection using DECAN
» ONE VIEW THREE (includes analyses from report TWO)
* Requires 20 to 30 runs
* Decremental analyses using all DECAN variants
* Collects hardware performance events
» Scalability
* Requires as many additional runs as parallel configurations
* Can be executed in addition to another report
* Profilings using LProf on different parallel configurations

24

EXGSCQ’E 0O ONE View Global Metrics @

4

» Global metrics
* General quality metrics derived from MAQAO analyses
* Global speedup predictions

> Potential speedups

* Speedup prediction depending on the number of optimised
loops

* Ordered speedups to identify the loops to optimise in priority
» LProf provides coverage of the loops
» CQA and DECAN provide speedup estimation for loops

* Speedup if loop vectorised or without address computation
* Alldata in L1 cache

25

26

Exascaleon

] reseg

omputii

_ MAQAO ONE View Loop Analysis Report @

High level reports
> Reference to the source code
> Bottleneck description

» Hints for improving
performance

> Reports categorized b
probability that applying hints
will yield predicted gain

* Gain: Good probability

Potential gain: Average
probability

Hints: Lower probability

MAGAQO Global Application Functions Topology
Source Assembly <N > [Advanced
2 = Path[i /1 [ok =
[/emp/NEBS 3. 1-M2/NEB3 . 3-M2-MP1/BT-M2/ /y_solve.£: 145 - 308
Coverage 5.85%
do 3 =1, jsize-1 Function y_solve_._omp_fn.0

Source file and lines y_solve.f:145-308

dc = oyl
Module bt-mz.C.16

pl

tmp2 = do + ty2

The loop is defined in /tmp/NPB3.3.1-MZ/NPB3.3-MZ-MPI/BT-MZ/y_solve.f:145-308.

tmp2 * f3ac(1,2,3-1) The related source loop is not unrolled or unrolled with no peel/tail loop.

> ac(1,2,3-1)
- * fac(1,3,0m) potential | hint | expert
> 5-1)

ac(1,3,
) = - tmp2 = f3ac(1,4,3-1)
> - wmpl * njac(l,4,3-1)
1ns(1,5,a2,3) = - cwp2 + f3ac(1,S,3-1)
~tmpl * n3ac(1,$,3-1)

Vectorization

Your loop is probably not vectorized. Only 14% of vector register length is used (average
across all SSE/AVX instructions). By vectorizing your loop, you can lower the cost of an
)

e B e ol iteration from 204.00 to 25.50 cycles (8.00x speedu

pl]
1ns(2,2,22,3) (2,2,3-1)
- ompl *)

Store and arithmetical SSE/AVX instructions are used in scalar version (process only one
data element in vector registers). Since your execution units are vector units, only a
vectorized loop can use their full power.

- cmpl

1ns(2,3,22,3) = - wEp2 * £320(2,3,3-1
e 2c(2,3,3-1

1ns(2,4,22,3) = - wEp2 + f3ac(2,4,3-1)

cmpl * njac(2,4,3-1)

,2a,3) = - twp2 * f3ac(2,5,3-1)

cmpl * n3ac(2,$,3-1)

1ms(2, s,

c(3,1,3-1)

1ns(3,1,28,3) = - cmp2 *
~ tmpl * n3ac(3,1,3
cup2 *

)
£3ac(3,2,3-1) Workaround
ac(3,2,5-1)

) = - ompz * f3ac(3,3,3-1)
> ~tnpl * nac(3,3,3-1)

st or ffast-math) to extend

gain | potential

ind make it unit-stride:

whether elements are accessed
s accordingly: Fortran storage
4, non stride 1) => do i do

Presence of both ADD/SUB and MUL operations.
Workaround

y to use structures of arrays
e 1) => do i a%x(i) = b%x(i)

ore unit is a bottleneck). By
sy you s s e wwes v w Iteration from 204.00 to 141.33

« Recompile with march=skylake-avx512. CQA target is Skylake_SP (Intel(R) Xeon(R)
Skylake SP) but specialization flags are -march=x86-64

« Try to change order in which elements are evaluated (using parentheses) in arithmetic

- operations to enable your compiler to

or instance a + b*c is a valid FMA (MUL

ed into an FMA (ADD then MUL)

L gain [potential L expert |
Type of elements and instruction set

195 SSE or AVX instructions are processing arithmetic or math operations on double precision FP elements in
scalar mode (one at a time).

Matching between your loop (in the source code) and the binary loop

The binary loop is composed of 195 FP arithmetical operations:

array elements
are information to your compiler:
« 70: addition or subtraction ‘ode the bounds of the corresponding ‘for' loop

* 125: multiply

The binary loop is loading 1760 bytes (220 double precision FP elements). The binary loop is storing 1632 bytes
(204 double precision FP elements).

Arithmetic intensity

Arithmetic intensity is 0.06 FP operations per loaded or stored byte

Unroll opportunity

Loop is data access bound.

Workaround

Unroll your loop if trip count is significantly higher than target unroll factor and if some data references are
common to consecutive iterations. This can be done manually. Or by recompiling with -funroll-loops and/or
-floop-unroll-and-jam

Exascale o0 MAQAO ONE View Scalability Reports @

: If"T]'ﬂL.TJ'J"'g research

» Goal: Provide a view of the application scalability
* Profiles with different numbers of threads/processes
* Displays efficiency metrics for application

s | Configuration (Processes MPI - Threads OpenMP)
Bl

¥ Detailed Speed-Up and Efficiency

MAQAQ Performance Analysis and
27 Optimization Tool

Exascaleoo MAQAO ONE View Scalability Reports @

: computing research Application View

» Coverage per category
* Comparison of categories for each run

» Coverage per parallel efficiency

" Distinguishing functions only represented in parallel or sequential
* Displays efficiency by coverage

KBl Scalability - Coverage per Category pplication Categorization 2 Scalability - Coverage per Parallel Efficiency

0% t0 10% g 10% to 20% 1 20 to 30% g 30K to 40% g 405 to SO% 1 50X to 605 g 605 to 70 g T0% o 80 g 80 t0 90%
B ctficiency M efficiency ™ efficiency ™ efficiency ™ effi = - L Ll -

MAQAQ Performance Analysis and
28 Optimization Tool

EXGSCGIE o0 More on MAQAO @

4

» MAQAO website:

* Documentation:
" Tutorials for ONE View, LProf and CQA
" Lua API documentation

* Latest release:
" Binary releases (2-3 per year)
" Core sources

* Publications around MAQAO:

29

http://www.maqao.org/
http://www.maqao.org/documentation.html
http://www.maqao.org/downloads.html
http://www.maqao.org/publications.html

EXGSCQ’.E 0 MAQAO Team and Collaborators @

4

> MAQAO Team > Past Collaborators/Team members
* Prof. William Jalby * Prof. Denis Barthou
* (Cédric Valensi, Ph D * Jean-Thomas Acquaviva, Ph D
* Emmanuel Oseret, Ph D * Stéphane Zuckerman, Ph D
* Mathieu Tribalat * Julien Jaeger, Ph D
* Salah J. Ibnamar * Souad Koliai, Ph D
* Keévin Camus * Zakaria Bendifallah, Ph D
* Tipp Moseley, Ph D
> Collaborators * Jean-Christophe Beyler, Ph D
* Prof. David J. Kuck * Hugo Bolloré
* Eric Petit, Ph D * Jean-Baptiste Le Reste
* Pablo de Oliveira, Ph D * Sylvain Henry, Ph D
* David Wong, Ph D * José Noudohouennou, Ph D
* Othman Bouizi, Ph D * Aleksandre Vardoshvili
* Andrés S. Charif-Rubial, Ph D * Romain Pillot

* Youenn Lebras

30

Exascale oo

BB

Thanks for your attention!

31

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

