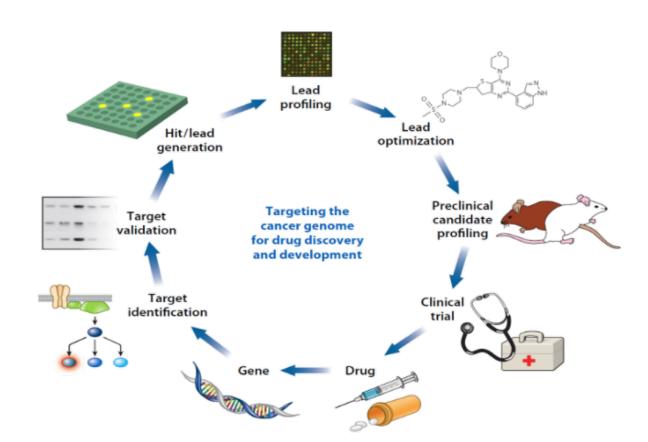


mec

EXASCALE MATRIX FACTORIZATION: MACHINE LEARNING ON SUPERCOMPUTERS TO FIND NEW DRUGS

TOM VANDER AA
EXASCIENCE LIFE LAB

DRUG DEVELOPMENT IS TOO EXPENSIVE



COMPOUND ACTIVITY PREDICTION

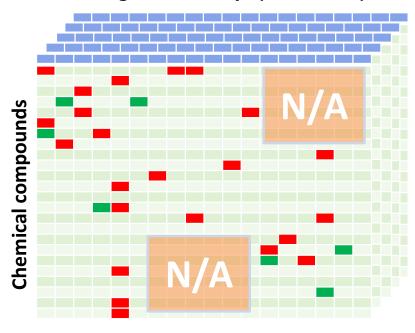
Predict

- compound activity on
- protein target
- aka chemogenomics

Like

- Netflix: users rating movies
- Amazon: users rating books

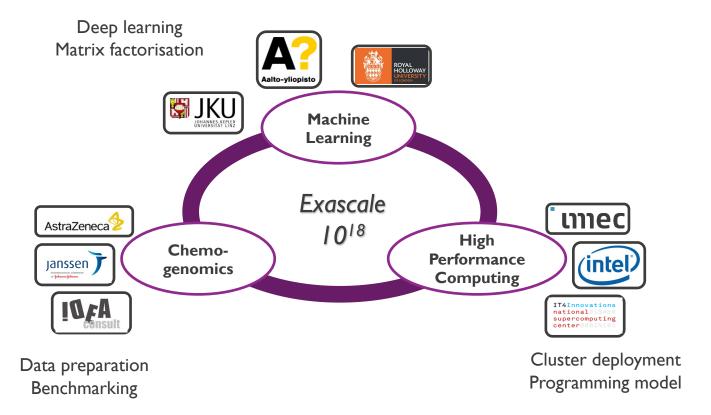
Targets: bioassays (Thousands)



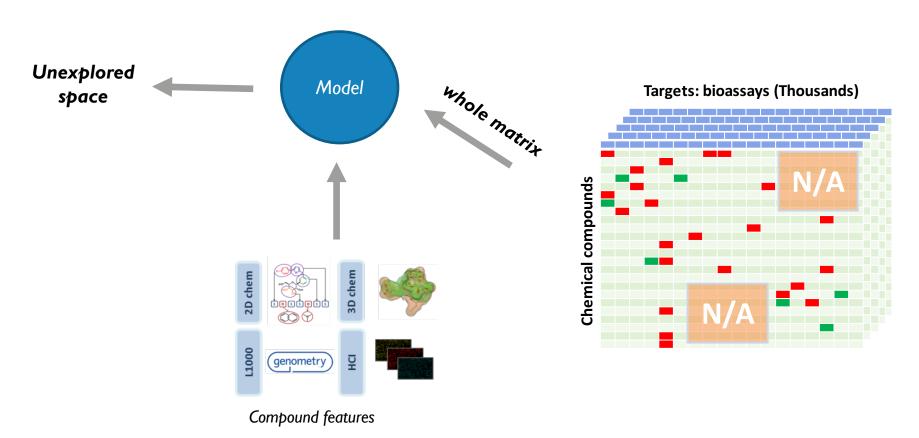
EXCAPE PROJECT

* * * * * * * *

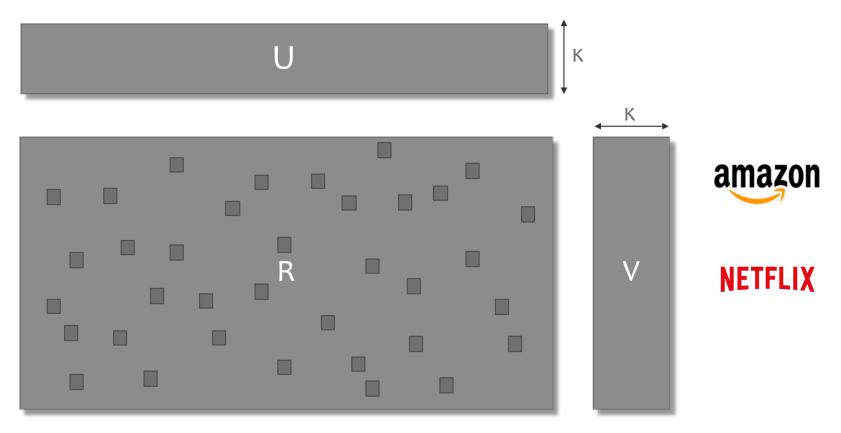
EXASCALE COMPOUND ACTIVITY PREDICTION ENGINES



MULTITARGET CHEMOGENOMICS

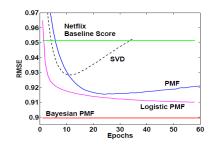


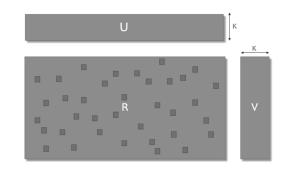
BPMF:= LOW-RANK MATRIX FACTORIZATION



FROM SIMPLE, PROMISING BUT SLOW ...

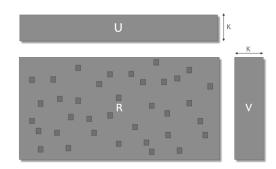
- BPMF is simple
 - 25 lines of Julia code
 - 35 lines of Eigen C++ code
- BPMF predicts well
 - Bayesian → confidence interval
- BPMF is slow
 - Sampling based
 - Julia prototype: 15 days / run





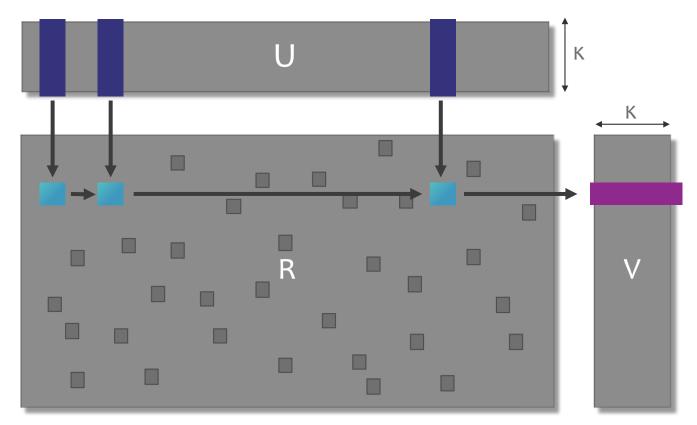
... TO FAST AND COMPLEX

- Many Optimizations
 - Algorithmic
 - Memory Hierarchy
- Multi-core
 - Load Balancing
 - using OpenMP and TBB
- Multi-node
 - Asynchronous communication
 - using MPI and GASPI



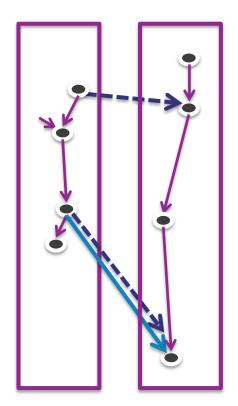
BPMF COMMUNICATION AND COMPUTATION

IS DETERMINED BY STRUCTURE OF R



GASPI IN A NUTSHELL

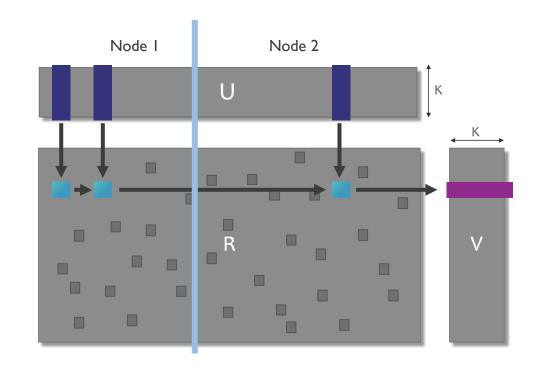
- PGAS API designed to be
 - Multithreaded
 - Global asynchronous dataflow
 - Interoperability with MPI
- GASPI Specification (gaspi.de)
- GPI-2 Implementation (gpi-site.com)



ASYNCHRONOUS DISTRIBUTED BPMF

- Split both U/V, optimizing:
 - Load balance (# rows, #nnz)
 - 2. Communication

- Basic Pattern GASPI
 - Compute a column of U/V
 - Send early



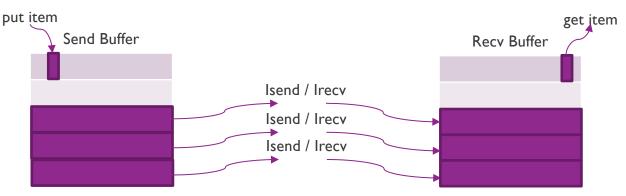
CHALLENGES USING MPI

- MPI is not thread-safe by default
 - Multiple work threads, one MPI thread
- MPI calls have high overhead
 - Buffer before send
- Many possible MPI primitives
 - MPI Bcast
 - simple, synchronous, does not scale well
 - MPI Put
 - need to split U in multiple MPI Windows, one window per peer
 - actual MPI work delayed until end of epoch
 - MPI_Isend/Irecv
 - best at doing background work
 - many irecvs/isends in flight

CURRENT BEST MPI IMPLEMENTATION

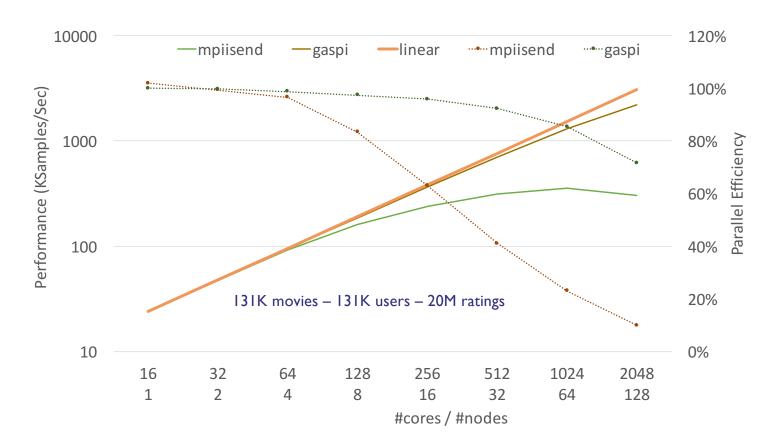
Buffered ISend/IRecv

- One buffer-pair per send-receive pair
- Several chunks per buffer
- Several items per chunk

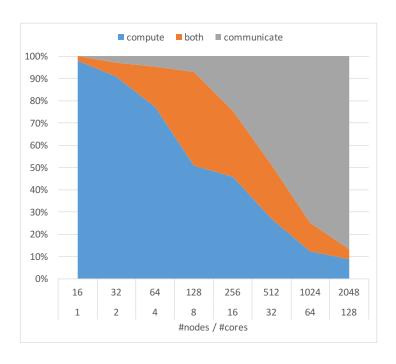


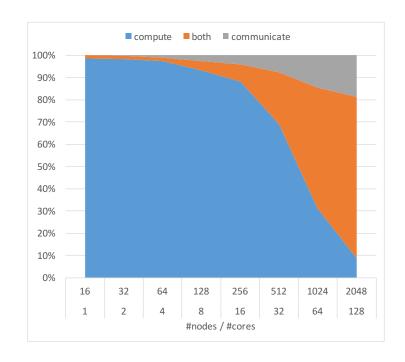
- 5 chunks → maximally 5 Isend/Irecv in flight
- 100 items per chunk

DISTRIBUTED PERFORMANCE – 128 NODES



COMM / COMP OVERLAP





MPI GASPI

POP COE

- HPC Expertise in ExCAPE (Low to High)
 - Pharma partners
 - Machine Learning Partners
 - HPC Partners (e.g IMEC)
 - POP Partners

- Tools: Extrae, Paraver
- OpenMP tasks
- MPI Asynchronous collectives

POP COE HELP

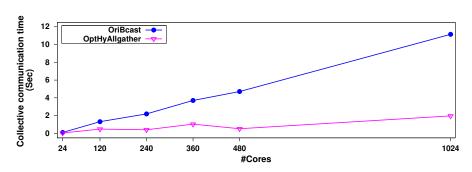
I. Audit Report

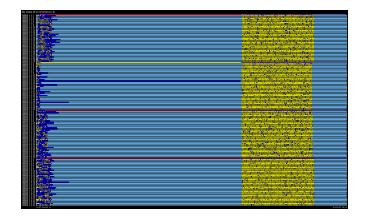
Load imbalanced detected using Extrae and Paraver

2. OpenMP Optimizations

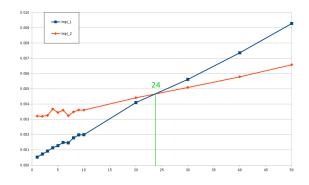
 Load imbalance fixed with extra arallelism using OpenMP tasks

3. Asynchronous MPI collectives





Optimization: best values of breakpoint 1



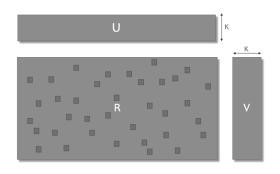
። Shamakina A. ። 14.02.17 ።

CONCLUSIONS OPTIMIZING BPMF

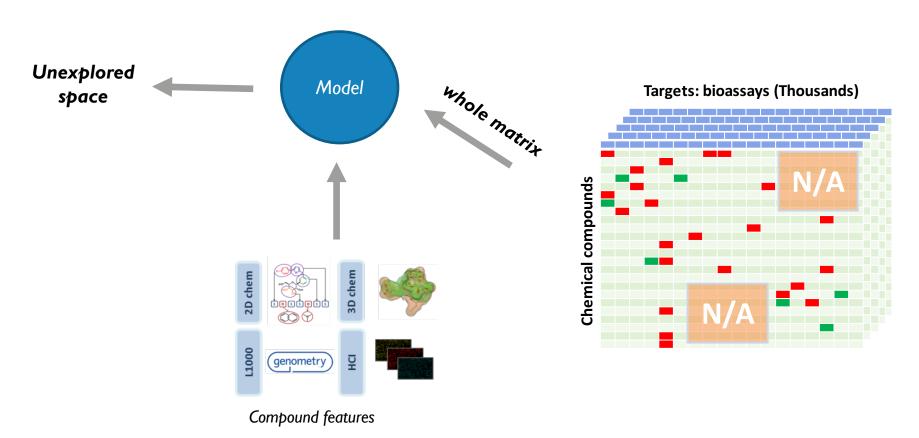
Reduced runtime on industrial data

Parallelism	Time I Run
Single node - Julia	15 days
Single node - C++ & TBB	1.5 hours
Distributed - C++ & TBB & GASPI	5 minutes

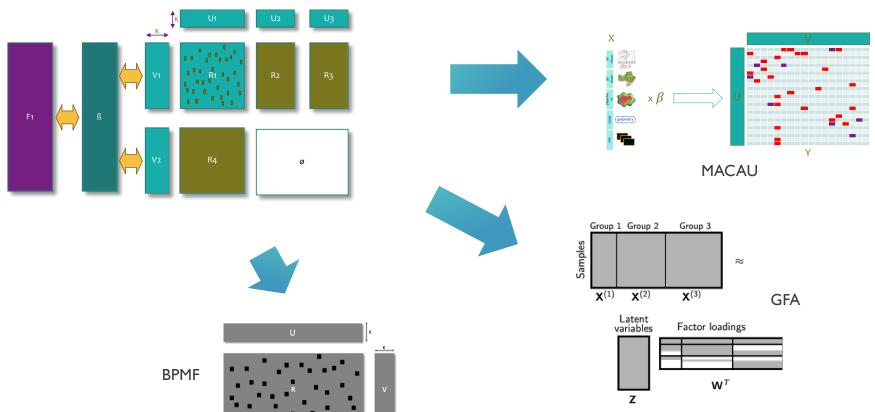
- Parallel efficiency is important
 - Load Balancing and Communication Hiding
- BPMF Released on GitHub
 - https://github.com/ExaScience/bpmf



MULTITARGET CHEMOGENOMICS



EXCAPE SMURFF FRAMEWORK



FROM BPMF TO SMURFF

SINGLE NODE, USER-FRIENDLY VERSION

- Versatile: many matrix & tensor factorization methods
- Maintainable: C++ with OpenMP and MPI
- Easy to use: 'conda install smurff'
- Open source: https://github.com/ExaScience/smurff

A first example running SMURFF

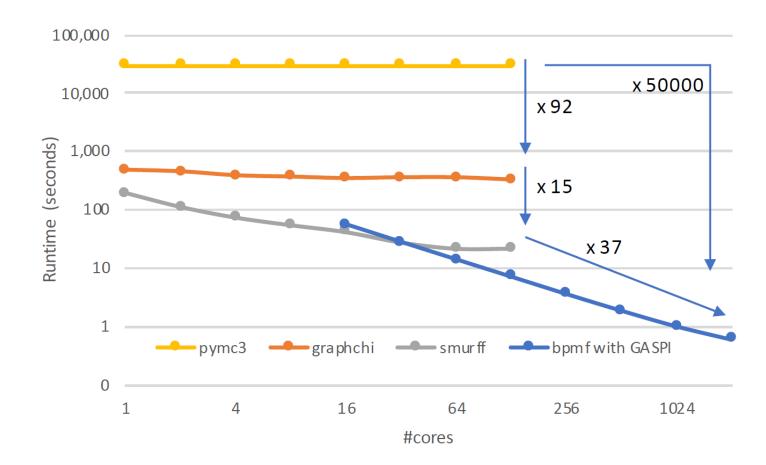
In this notebook we will run the BPMF algorithm using SMURFF, on compound-activity data.

Downloading the data files

In these examples we use ChEMBL dataset for compound-proteins activities (IC50). The IC50 vi downloaded using this smurff function:

```
import smurff
ic50 train, ic50 test, ecfp = smurff.load chembl()
```


SMURFF PERFORMANCE IS STILL GOOD



ASYNCHRONOUS DISTRIBUTED BPMF WITH POSTERIOR PROPAGATION

Latent factors

Global: $\mathbf{X}_{N \times K}$ Local: $\widetilde{\mathbf{X}}_{N_i \times K}^{ij}$

$\sqrt{\mathbf{X}^1}$	$\widetilde{\mathbf{X}}^{1j}$
\mathbf{X}^2	$\widetilde{\mathbf{X}}^{2j}$
\mathbf{X}^3	$\widetilde{\mathbf{X}}^{3j}$
\mathbf{X}^4	$\widetilde{\mathbf{X}}^{4j}$

$oldsymbol{W}^1$	\mathbf{W}^2	\mathbf{W}^3	\mathbf{W}^4
$\widetilde{\mathbf{W}}^{i1}$			

$\sqrt{\mathbf{Y}^{11}}$	Y ¹²	Y ¹³	Y ¹⁴
Y ²¹	Y ²²	Y ²³	Y ²⁴
Y ³¹	Y ³²	Y 33	Y ³⁴
Y ⁴¹	Y ⁴²	Y ⁴³	Y ⁴⁴

Loading matrix Global: $\mathbf{W} \in \mathbf{R}^{D \times K}$ Local: $\widetilde{\mathbf{W}}^{ij} \in \mathbf{R}^{D_j \times K}$

Full data: $\mathbf{Y}_{N\times D}$ Subdata: $\mathbf{Y}_{N_i \times D_i}^{ij}$

The formulation of submodels in the third stage takes the same form as BPMF, but with different priors for model parameters, i.e.

$$\mathbf{y}_{n}^{(i,j)} = \widetilde{\mathbf{W}}^{(i,j)} \widetilde{\mathbf{x}}_{n}^{(i,j)} + \epsilon_{n}, \ \epsilon_{n} \sim \mathcal{N}_{D_{j}}(0, \Sigma)$$

$$\mathbf{x}_{n}^{(i,j)} \sim p(\mathbf{x}_{n}^{(i,j)} | \mathbf{X}^{(i,1)}) \sim \mathcal{N}_{K}(\mathbf{y}_{n}^{(i,j)} | \mu_{\mathbf{X}^{(i,1)}}, \Sigma_{\mathbf{X}^{(i,1)}})$$

$$\mathbf{w}_{d}^{(i,j)} \sim p(\mathbf{w}_{d}^{(i,j)} | \mathbf{W}^{(1,j)}) \sim \mathcal{N}_{K}(\mathbf{w}_{d}^{(i,j)} | \mu_{\mathbf{w}_{d}^{(1,j)}}, \Sigma_{\mathbf{w}_{d}^{(1,j)}})$$

$$(2)$$

VIRTUAL MOLECULE SCREENING

ON CPU, GPU, AND FPGA

genometry

Feature Vector

CONCLUSIONS

- Compound Activity Prediction in the ExCAPE project
- Matrix Factorization

Virtual Molecule Screening on GPU and FPGA

