
PUBLIC

EXASCALE MATRIX FACTORIZATION:
MACHINE LEARNING ON SUPERCOMPUTERS TO FIND NEW DRUGS

TOM VANDER AA
EXASCIENCE LIFE LAB

PUBLIC

DRUG DEVELOPMENT IS TOO EXPENSIVE

PUBLIC

COMPOUND ACTIVITY PREDICTION

Predict
compound activity on
protein target
aka chemogenomics

Like
Netflix: users rating movies
Amazon: users rating books

Targets:	bioassays	(Thousands)

Ch
em

ica
l	c
om

po
un

ds
(M

ill
io
ns
)

NA

NA

N/A

N/A

PUBLIC

EXCAPE PROJECT
EXASCALE COMPOUND ACTIVITY PREDICTION ENGINES

Deep learning
Matrix factorisation

Data preparation
Benchmarking

Cluster deployment
Programming model

Machine
Learning

High
Performance
Computing

Chemo-
genomics

Exascale
1018

PUBLIC

MULTI TARGET CHEMOGENOMICS

Unexplored
space Model

Compound features

Targets:	bioassays	(Thousands)

Ch
em

ica
l	c
om

po
un

ds
(M

ill
io
ns
)

NA

NA

N/A

N/A

whole matrix

PUBLIC

BPMF := LOW-RANK MATRIX FACTORIZATION

PUBLIC

FROM SIMPLE, PROMISING BUT SLOW …

BPMF is simple
25 lines of Julia code
35 lines of Eigen C++ code

BPMF predicts well
Bayesian à confidence interval

BPMF is slow
Sampling based
Julia prototype: 15 days / run

PUBLIC

… TO FAST AND COMPLEX

Many Optimizations
Algorithmic
Memory Hierarchy

Multi-core
Load Balancing
using OpenMP and TBB

Multi-node
Asynchronous communication
using MPI and GASPI

PUBLIC

BPMF COMMUNICATION AND COMPUTATION
IS DETERMINED BY STRUCTURE OF R

PUBLIC

GASPI IN A NUTSHELL

PGAS API - designed to be
Multithreaded
Global asynchronous dataflow
Interoperability with MPI

GASPI Specification (gaspi.de)
GPI-2 Implementation (gpi-site.com)

gaspi_writegaspi_notify

http://gaspi.de/
http://www.gpi-site.com/

PUBLIC

ASYNCHRONOUS DISTRIBUTED BPMF

Split both U/V, optimizing:
1. Load balance (# rows, #nnz)
2. Communication

Basic Pattern GASPI
Compute a column of U/V
Send early

Node 1 Node 2

PUBLIC

CHALLENGES USING MPI

MPI is not thread-safe by default
Multiple work threads, one MPI thread

MPI calls have high overhead
Buffer before send

Many possible MPI primitives
MPI_Bcast

simple, synchronous, does not scale well

MPI_Put
need to split U in multiple MPI Windows, one window per peer
actual MPI work delayed until end of epoch

MPI_Isend/Irecv
best at doing background work
many irecvs/isends in flight

PUBLIC

CURRENT BEST MPI IMPLEMENTATION

Buffered ISend/IRecv
One buffer-pair per send-receive pair
Several chunks per buffer
Several items per chunk

Send Buffer

• 5 chunks à maximally 5 Isend/Irecv in flight
• 100 items per chunk

put item

Recv Buffer

Isend / Irecv

get item

Isend / Irecv

Isend / Irecv

PUBLIC

0%

20%

40%

60%

80%

100%

120%

10

100

1000

10000

16
1

32
2

64
4

128
8

256
16

512
32

1024
64

2048
128

Pa
ra
lle
l	E
ffi
ci
en

cy

Pe
rfo

rm
an
ce
	(K

Sa
m
pl
es
/S
ec
)

#cores	/	#nodes

mpiisend gaspi linear mpiisend gaspi

DISTRIBUTED PERFORMANCE – 128 NODES

131K movies – 131K users – 20M ratings

PUBLIC

COMM / COMP OVERLAP

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128 256 512 1024 2048

1 2 4 8 16 32 64 128
#nodes	/	#cores

compute both communicate

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

16 32 64 128 256 512 1024 2048

1 2 4 8 16 32 64 128
#nodes	/	#cores

compute both communicate

MPI GASPI

PUBLIC

POP COE

HPC Expertise in ExCAPE (Low to High)
Pharma partners
Machine Learning Partners
HPC Partners (e.g IMEC)
POP Partners

We learned
Tools: Extrae, Paraver
OpenMP tasks
MPI Asynchronous collectives

16

PUBLIC

POP COE HELP

1. Audit Report
• Load imbalanced detected using Extrae and Paraver

2. OpenMP Optimizations
• Load imbalance fixed with extra arallelism using

OpenMP tasks

3. Asynchronous MPI collectives

17

POP Ref.No. POP AR 19

(a) Paraver timeline view of the entire 4 node BPMF run.

(b) Paraver timeline zoom of the third iteration going from 11 837 520 824 ns – 16 928 071 146 ns

Figure 2: Paraver timeline views of the 4 node BPMF run. The run was performed using one
MPI process and 36 OpenMP threads (no pinning) per node. Time goes from left to right,
processes and threads from top to bottom. Colours indicate the state of the threads: MPI (red,
purple), OpenMP/scheduling (yellow), running (blue), idling (light blue), thread not created
yet (white)

3

:: ::

 ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: ::::: :::::

:: Shamakina A. 14.02.17 21

Optimization: best values of breakpoint 1

24

POP Ref.No. POP PoCR 9

each of them is a blocking operation. This can fully explain the rapid increase in the collective
communication time in the original version of BPMF application and then its poor scalability.

 0

 2

 4

 6

 8

 10

 12

24 120 240 360 480 1024C
o

ll
e

c
ti

v
e

 c
o

m
m

u
n

ic
a

ti
o

n
 t

im
e

(S

e
c

)

#Cores

OriBcast
OptHyAllgather

Figure 6: Measured collective communication time performance comparison between the original
broadcast version and the hybrid version of the BPMF application using the number of processes
varying from 24 to 1024. Regarding the descriptions on OriBcast, OptHyAllgather refer to Fig. 5.

6 Conclusions
During this PoC study the BPMF code was optimised to obtain better scalability across multiple
nodes and all goals were fulfilled in terms of the given evaluation metrics. This PoC report
focused on the improvement of the applied MPI collective communication behaviour, which
was proved to be the major performance bottleneck. The substitution of the original broadcast
communication with the all-to-all gather communication operations led to an improvement of
up to 21% in both CE and PE for this BPMF application. The hybrid all-to-all gather scheme
based on MPI SHM model was further applied which greatly reduced the occurrence of inter-
process data transfers. The collective communication latency thus fell by up to 89%. Figure 5
shows the performance ratios after the PoC activities, where the ratio increases with the number
of MPI processes. Therefore, an optimised scaling can be reached.

Ideally, total execution time should be reduced gradually as the increase of the number
of processes according to the Amdahl’s Law. However, the scaling worsened for very large
number of processes in this scenario, primarily due to the increasing overhead of dealing with
the point-to-point communication operations, which introduced a new performance bottleneck
after the collective communication time got accelerated. Also, the solved problem size was not
su�ciently large to match the significant amounts of computing resources and then led to that
the communication latency outweighed the useful computation time. Therefore, larger dataset
is strongly recommended to be applied, in order to make full use of the computing resources.
Otherwise, an acceptable strong scaling curve can hardly be achieved on a large-scale system.

Our experiences with the above improvement of the BPMF application indicate the scala-
bility issue of MPI collective communication operations and the powerful role that the MPI-3
SHM model plays in large-scale application and system.

We strongly recommend the usage of MPI-3 SHM model when possible since applications
need to be always memory e�cient. This can also fix the memory consumption issue at the
large scale systems by only maintaining one copy of data shared by all processes within one
node instead of making local copies of data for all processes. The MPI collective communication

16

PUBLIC

CONCLUSIONS OPTIMIZING BPMF

Reduced runtime on industrial data

Parallel efficiency is important
Load Balancing and Communication Hiding

BPMF Released on GitHub
https://github.com/ExaScience/bpmf

Parallelism Time 1
Run

Single node - Julia 15 days

Single node - C++ & TBB 1.5 hours

Distributed - C++ & TBB & GASPI 5 minutes

https://github.com/ExaScience/bpmf

PUBLIC

MULTI TARGET CHEMOGENOMICS

Unexplored
space Model

Compound features

Targets:	bioassays	(Thousands)

Ch
em

ica
l	c
om

po
un

ds
(M

ill
io
ns
)

NA

NA

N/A

N/A

whole matrix

PUBLIC

EXCAPE SMURFF FRAMEWORK

V1

U1
K

K

R1 R2

U2

F1 ß

R4V2

R3

U3

ø

U

VX

2D

ch
em

3D

ch
em

ph
ys

ch
e

m
L1

00
0

H
CI

x !

Y

BPMF

MACAU

GFA

PUBLIC

FROM BPMF TO SMURFF

Versatile: many matrix & tensor factorization methods
Maintainable: C++ with OpenMP and MPI
Easy to use: `conda install smurff`
Open source: https://github.com/ExaScience/smurff

SINGLE NODE, USER-FRIENDLY VERSION

https://github.com/ExaScience/smurff

PUBLIC

SMURFF PERFORMANCE IS STILL GOOD

PUBLIC

ASYNCHRONOUS DISTRIBUTED BPMF WITH POSTERIOR PROPAGATION
Distributed BMF with Posterior Propagation

Latent factors
Global: XN⇥K

Local: eXij
Ni⇥K

"
W1 W2 W3 W4

fWi1 fWi2 fWi3 fWi4

Loading matrix
Global: W 2 RD⇥K

Local: fWij 2 RDj⇥K

2

66664

X1 eX1j

X2 eX2j

X3 eX3j

X4 eX4j

3

77775

2

6664

Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

Y41 Y42 Y43 Y44

3

7775

Full data: YN⇥D

Subdata: Yij
Ni⇥Dj

The formulation of submodels in the third stage takes the same form as
BPMF, but with di↵erent priors for model parameters, i.e.

y(i ,j)n = fW(i ,j)ex(i ,j)n + ✏n, ✏n s NDj (0,⌃)

x(i ,j)n s p(x(i ,j)n |X(i ,1)) s NK (y
(i ,j)
n |µX(i,1) ,⌃X(i,1))

w(i ,j)
d s p(w(i ,j)

d |W(1,j)) s NK (w
(i ,j)
d |µ

w(1,j)
d

,⌃
w(1,j)
d

)

(2)

Qin et al. (HIIT, Aalto University) Distributed BMF ExCAPE Brussels meeting 6 / 16

PUBLIC

VIRTUAL MOLECULE SCREENING

24

ON CPU, GPU, AND FPGA

Fe
at

ur
e

Ve
ct

or

Streaming
Target

Predic3onsβ
Link

Matrix
✖

La
te

nt
 V

ec
to

r

+

Embed β on
the FPGA

Target
Represe
ntation

Embed on
the FPGA

✖ =

Ta
rg

et
 P

re
di

c3
on

s

Generate
Feature
Vector

La
te

nt
 M

ea
n

=

PUBLIC

CONCLUSIONS

Compound Activity Prediction in the ExCAPE project
Matrix Factorization

BPMF with GASPI optimized by POP
SMURFF - https://github.com/ExaScience/smurff

Virtual Molecule Screening on GPU and FPGA

25

https://github.com/ExaScience/smurff

