

Runtime Correctness Checking

Joachim Protze, RWTH Aachen University

Runtime Correctness Checking

Tools to detect correctness issues in parallel applications

- Can only detect issues observable during the execution
 - Static analysis tool can detect issues in complete code base

Use representative input data

Optimized to yield as few false positive reports as possible

MUST

Scalable correctness checking for MPI

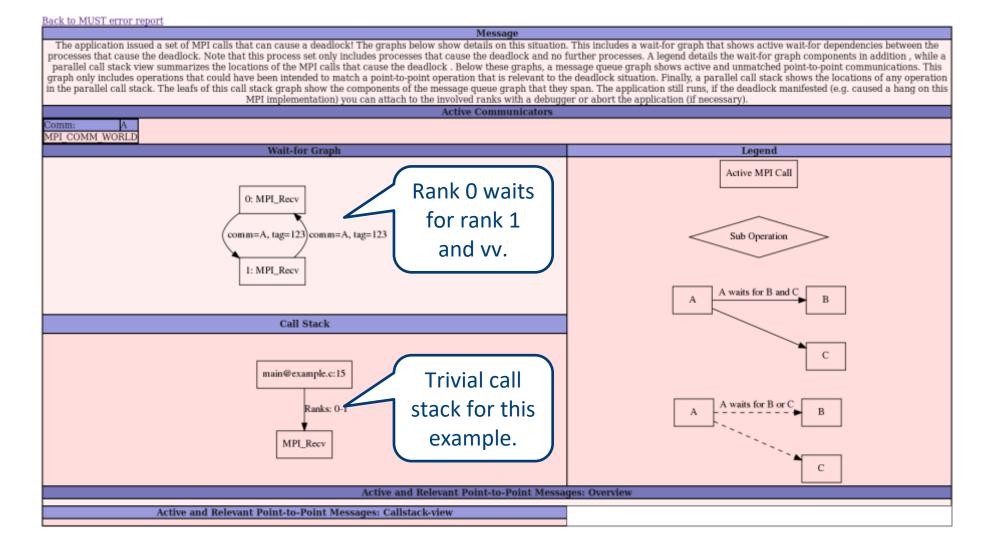
Typical MPI errors


```
#include <mpi.h>
                                                               No MPI_Init before first MPI-call
#include <stdio.h>
                                                                      Fortran type in C
int main (int argc, char** argv)
                                                                     Recv-recv deadlock
                                                                RankO: src=size (out of range)
   int rank, size, buf[8];
                                                               Type not committed before use
   MPI Comm rank (MPI COMM WORLD, &rank)
                                                              Type not freed before end of main
   MPI Comm size (MPI COMM WORLD, &size);
                                                               Send 4 int, recv 2 int: truncation
   MPI Datatype type;
                                                             No MPI Finalize before end of main
   MPI Type contiguous (2, MPI INTEGER,
   MPI Recv (buf, 2, MPI_INT, size - rank, 123, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
   MPI Send (buf, 2, type, size - rank, 123, MPI COMM WORLD);
   printf ("Hello, I am rank %d of %d.\n", rank, size);
   return 0;
                                                     Note: MUST needs MPI Init and MPI Finalize
                                                     to detect start and end of the MPI application!
```


Running MUST with the example

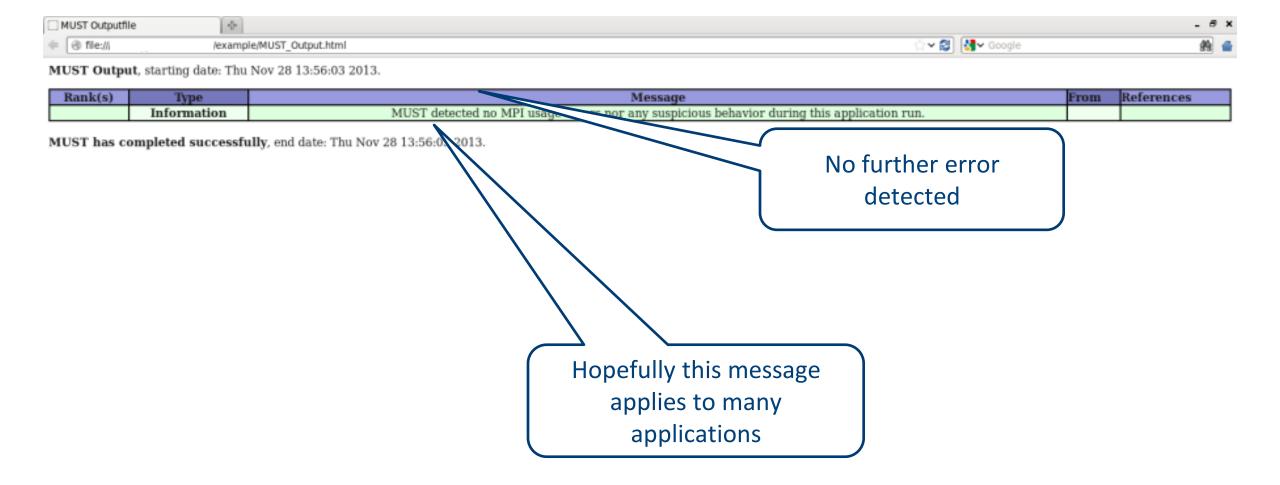

```
~/must-example $ mpigcc -g example.c
~/must-example $ mustrun --must:mpiexec mpiexec -hosts localhost -n 2 a.out
[MUST] MUST configuration ... centralized checks with fall-back application crash handling
(very slow)
[MUST] Information: overwritting old intermediate data in directory "~/must-example/must temp"!
[MUST] Using prebuilt infrastructure at ~/MUST/modules/mode1-layer2
[MUST] Search for linked P^nMPI ... not found ... using LD PRELOAD to load P^nMPI ... success
[MUST] Executing application:
========MIJST===========
ERROR: MUST detected a deadlock, detailed information is available in the MUST output file. You
should either investigate details with a debugger or abort, the operation of MUST will stop
from now.
                               Press Ctrl + C
^C
[MUST] Execution finished, inspect "~/must-example/MUST Output.html"!
~/must-example $
```


MUST Output: Html-file



		Wł	10?	Wha	t?	W	here?			Details
R	ank(s)	Туре			Message			From		Reference References of a
	2	Error	(Information on sen	first element of the INTEGER) in the set of positions. The set of at reference 2. (Info dof count 2 with typence 4, based on the R, 0), (MPI_INTEGE) typence 4.	send that did not fit end type (consult the nd operation was stormation on commu- pe:Datatype created following type(s): { R, 4)}) (Information pe:MPI_INT) ase of an av	t into the receive op he MUST manual fo carted at reference i unicator: MPI_COM d at reference 3 is f { MPI_INTEGER}T n on receive of coun	peration is at r a detailed 1, the receive 1M WORLD) 1 Fortran, 1 ypemap = 1 t 2 with	Representative MPI_Send occurrence) ca #0 main@ex fix1.c:1	location: I (1st lled from: ample- 9	representative process: reference 1 rank 2: MPI_Send (1st occurrence) called from: #0 main@example-fix1.c:19 reference 2 rank 1: MPI_Irecv (1st occurrence) called from: #0 main@example-fix1.c:17 reference 3 rank 2: MPI_Type_contiguous (1st occurrence) called from: #0 main@example-fix1.c:13 reference 4 rank 2: MPI_Type_commit (1st occurrence) called from: #0 main@example-fix1.c:14
					•	•				
					uffer-relate					
				Click for the dete	graphical re ected deadle	epresentatio ock situatio	on of			reference 4 rank 2: MPI_Type_commit (1st occurrence) called from:

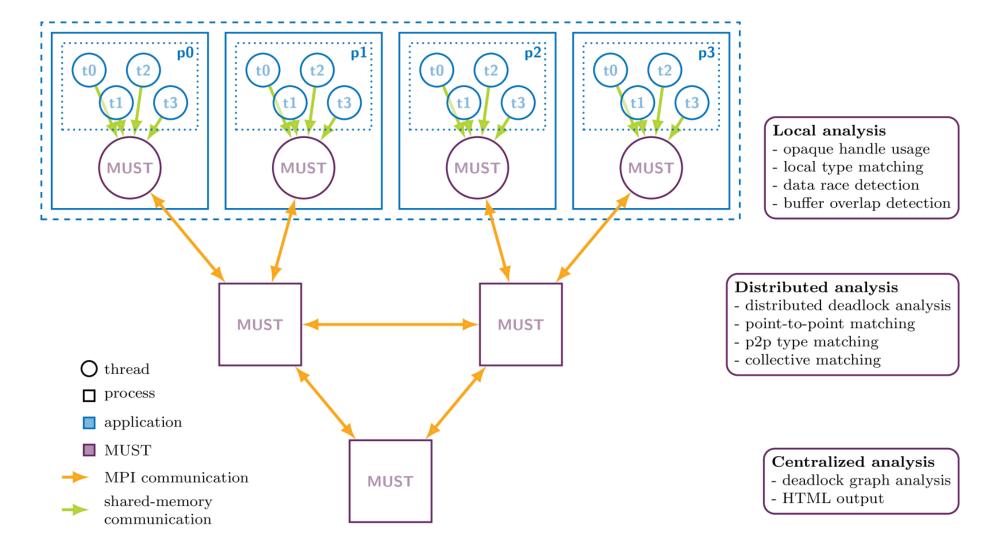
Graphical representation of deadlocks



7

Best case: no error is detected

MUST Usage



- 1. Compile and link application as usual
 - Link against the shared version of the MPI lib (Usually default)
 - Add debugging flag for source line information
- 2. Replace "mpiexec" with "mustrun"
 - E.g.: mustrun -np 4 myApp.exe input.txt output.txt
 - Or: mustrun --must:mpiexec srun -np 4 myApp.exe input.txt output.txt
- 3. Inspect "MUST_Output.html" in run directory
 - "MUST_Output/MUST_Deadlock.dot" exists in case of deadlock
 - Visualize with: dot -Tps MUST_Deadlock.dot -o deadlock.ps
- The mustrun script will use an extra process for non-local checks (Invisible to application)
- I.e.: "mustrun -np 4 ..." will issue a "mpirun -np 5 ..."
- Make sure to allocate the extra task in batch jobs

Distributed Agent-based Correctness Analysis

Important mustrun flags

--must:mpiexec <C>

Sets C as the mpiexec command (e.g., srun)

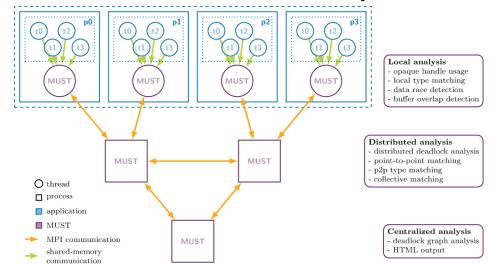
--must:nocrash

Assert that application will not crash

--must:info

Print information on necessary processes

--must:distributed


Request multi-level analysis tree (fan-in=16)

--must:fanin <N>

Request a branching factor of N

--must:hybrid

Enables analysis of multi-threaded applications

ARCHER

Data race detection for OpenMP

What is ARCHER?

- Data race detection based on ThreadSanitizer (LLVM/GNU)
 - Runtime overhead 2-20x
- Archer runtime
 - Provides OpenMP synchronization semantics to the analysis based on OMPT
 - Delivered as part of LLVM since release 10.0
- Archer static analysis
 - Clang compiler pass
 - Exclude race-free code from runtime analysis → reduce overhead
 - Development stalled and not compatible with latest clang

Running ARCHER with an example


```
~/archer-example$ clang -fopenmp prime omp.c -lm
~/archer-example$ OMP NUM THREADS=1 ./a.out
Number of prime numbers between 2 and 1000000: 78498
~/archer-example$ OMP NUM THREADS=4 ./a.out
Number of prime numbers between 2 and 1000000: 78409
~/archer-example$ clang -fsanitize=thread -g -fopenmp prime omp.c -lm
~/archer-example$ OMP NUM THREADS=4 ./a.out
______
WARNING: ThreadSanitizer: data race (pid=6999)
 Write of size 4 at 0x000001124ca8 by thread T3:
   #0 .omp_outlined._debug__ ~/archer-example/prime_omp.c:44:29 (a.out+0x4b6022)
   #1 .omp outlined. ~/archer-example/prime omp.c:40:5 (a.out+0x4b60b5)
 Previous write of size 4 at 0x000001124ca8 by thread T1:
   #0 .omp_outlined._debug_ ~/archer-example/prime_omp.c:44:29 (a.out+0x4b6022)
   #1 .omp_outlined. ~/archer-example/prime_omp.c:40:5 (a.out+0x4b60b5)
SUMMARY: ThreadSanitizer: data race ~/archer-example/prime omp.c:44:29 in .omp outlined. debug
============
```

**** * * ***

When can ARCHER detect a data race?

 A data race is when two threads access the same data without synchronization and at least one thread writes.

```
#pragma omp parallel for
for (i = 2; i < N; i++) {
        if (is_prime(i)) {
            primes[total++] = i;
}

45        }
</pre>
```

- Data race on total in line 44 is detected, if two different threads enter the body of the if-statement.
- Data race on primes in line 44 is detected, if above data race on total++ manifests in missing an increment.
- There is no benign race in C, C++, or OpenMP! Any data race is UB!

*** * * * *

How to use ARCHER?


```
clang -g -fopenmp -fsanitize=thread app.c
```

Fortran:

```
gfortran -g -c -fopenmp -fsanitize=thread app.c
clang -fopenmp -fsanitize=thread app.o -lgfortran \
    --gcc-toolchain=$(dirname $(dirname $(which gcc)))
```

- Sanitize flag is needed in compile and link step!
- Application must compile with LLVM or GNU compilers
- gfortran can be replaced with flang (more picky on Fortran standard!)

* * * * * * *

Important Archer flags

Avoid false-positive reports from uninstrumented runtime libraries:

```
$ export TSAN_OPTIONS="ignore_noninstrumented_modules=1"
```

• Disable analysis for sequential part of a pure OpenMP program (LLVM/12):

```
$ export ARCHER_OPTIONS="ignore_serial=1"
```

Disable loading of ARCHER at runtime:

\$ export ARCHER_OPTIONS="enable=0"

Make sure OpenMP is initialized early!
Add omp_get_max_threads() at the beginning of main

- More flags:
 - https://github.com/llvm/llvm-project/tree/main/openmp/tools/archer

Limitations of ARCHER

OpenMP tasks:

- Dependencies: currently ARCHER sees synchronization for non-sibling tasks (will be fixed in LLVM/13 *)
- Concurrency of tasks: currently ARCHER analyses on a threading level (task-level support to come in LLVM/13 *)
- OpenMP target regions:
 - No TSan analysis possible on GPUs, ARCHER can be used with x86 offloading
 - Might yield false positives, as ARCHER has no support yet for target constructs
- OpenMP reductions:
 - Memory accesses to implement reductions are ignored might leed to omission of races. (runtime flag to toggle reduction handling in LLVM/13)

MUST + ARCHER

Hybrid analysis of MPI + OpenMP

Features in testing state

- Analysis of data race in MPI:
 - Race between MPI buffer access and other thread
 - Race in MPI non-blocking communication
 - Race in MPI one-sided communication
 - Output onto commandline (or redirect into file using TSAN_OPTIONS)

- Type matching for application view on buffers
 - Compile-time information necessary for the analysis
 - Implemented as clang optimizer pass

Both features rely on LLVM compiler / OpenMP runtime

Performance Optimisation and Productivity

A Centre of Excellence in HPC

Contact:

https://www.pop-coe.eu mailto:pop@bsc.es @POP HPC

