
HORIZON-EUROHPC-JU-2023-COE 1 January 2024– 31 December 2026

Grant Agreement No 101143931

Exploring compiler behavior on applications from
Miniapps up to large scale applications on modern

processors
Hugo Bolloré, Emmanuel Oseret, Kévin Camus, Cédric Valensi, William Jalby, Université de Versailles Saint-Quentin-

en-Yvelines

ACKNOWLEDGEMENTS: ALTAIR, AWS, MEGWARE, ATOS/EVIDEN and CALMIP

The first goal is to analyze and assess quantitatively, compiler and compiler
options impact on performance.

The ultimate goal is to optimize application performance

➢ Identify strengths/weakness of various compilers options and compilers

➢ Leverage optimizations between compilers

➢ Study ISA impact

➢ Develop corresponding methodology and test on a real industrial strength
application

Objectives

➢ Methodology (MAQAO/ONEVIEW/QaaS)

➢ Mini App results

➢ LAMMPS Results

➢ OpenRadioss results

➢ Conclusion

TALK OVERVIEW

METHODOLOGY

Standard case: Compiler A with options OPT1 is slightly faster than compiler B with
options OPT2.

Easy (superficial) conclusion: use Compiler A with options OPT1

Better (more complex) approach: analyze compiler behavior

ISSUE: Compiler A can outperform compiler B for Function FOO and the situation
can be reversed for another Function BOO. There can be compensation between
various functions.

Performance analysis has to go down at least to the function level and very often
down to the loop level.

Due to the number of functions/loops involved, Analysis/assessment has to be
automated.

Methodology (1)

Timing will be performed at three levels: whole app, function level, loop level

Goals require detailed analysis of compiler outputs: assembly code

Relying on MAQAO/ONE View capabilities

➢ To evaluate capabilities, weakness and strengths of various ASM codes using
simplified simulators

➢ To perform matching between source code and different ASM variants: essential
requisite to analyze advanced compiler strategies multiversioning

Methodology (2)

Focus on loops: innermost/in between/outermost

Evaluate ASM using CQA (Code Quality Analysis) included in MAQAO.

➢Generic topics of interest

• Port / Functional Units usage

• Vectorization

• Instruction set use

• Vectorization Roadblocks

• Data access

➢ Two types of analysis: Static at the ASM level and Dynamic requiring measurement

IMPORTANT: By looking directly at ASM, both compiler mistakes but also source code

issues will be taken into account.

Analyzing Code Quality (1)

Classify performance issues into 5 main categories

1. Loop computation: issues related to the computation organization (FMA, SQRT/DIV, etc…)

2. Control Flow: issues relevant to control (branches, call, ….)

3. Data access: issues essentially related to memory operations (stride, indirect, spill/fill, ….)

4. Vectorization roadblocks: issues preventing vectorization (complex control flow, …)

5. Inefficient vectorization: issues related to vectorization quality (vector length, masked, …)

Analyzing Code Quality (2)

PENALTY SCORE: metric evaluating effort required to fix the corresponding issue

9

Link to MAQAO report

4 essential metrics:

1. Average active time: Sum over all threads of their active time divided
by thread count. IDEAL = total execution time

2. Activity ratio : Sum over all threads of their active time divided by
the sum of their wall time. IDEAL: 100%

3. Average active number of threads : Sum over all threads of their
active time divided by longest wall clock time: IDEAL = number of
threads used

4. Affinity stability: evaluates percentage of time spent without thread
migration between physical cores: IDEAL 100%48 MPI Ranks + 2 OMP Threads/ranks

OpenRadioss Taurus GFortran –O3 on G4

Global Characteristics: OneView typical output (1)

https://datafront.maqao.org/public/OpenRadioss/TAURUS10M/G4_AWS/gnu/OpenRadioss_TAURUS10M-short_g4-aws_o2_m48_gnu_engine/

10

https://datafront.exascale-computing.eu/public/OpenRadioss/TAURUS10M/G4_AWS/gnu/OpenRadioss_TAURUS10M-

short_g4-aws_o2_m48_gnu_engine/

For each thread, we gather a full picture of their activity: time spent in

various functions including time spent in various libraries: OpenMP, MPI

and Pthreads.

From these measurements we extrapolate impact of time spent in

OpenMP/MPI/Pthread libraries and load distribution.

Perfect OpenMP + MPI + Pthread: max (Original Thread time)/ max

(Stripped Thread Time): Stripped  time spent in OpenMP/MPI/Pthread

set to 0.

Perfect OpenMP + MPI + Pthread + Perfect Load Distribution: max

(Original Thread time)/ average (Stripped Thread Time):

A performance optimization goal is to have these 2 metrics under 1.1

48 MPI Ranks + 2 OMP Threads/ranks

Global Characteristics: OneView typical output (2)

OpenRadioss Taurus GFortran –O3 on G4

QaaS is an Open Source collaborative project aiming at providing a
software environment exploring (understanding/characterizing)
applications/systems performance, the ultimate goal being application
optimization.

QaaS (Quality as a Service) relies on the following features

➢ Automation: pushed as much as possible. Large amount of data
automatically generated

➢ Systematic exploration of key parameters space:
• hardware platforms (AMD, ARM (Ampere, Grace, G3/G4), INTEL, etc…)

• Compilers and compiler settings

• number of cores and core mapping, more generally runtime and run time
settings

• More generally: software stack parameters

QaaS Characteristics (1)

➢ Uniform exploration: to enable systematic comparison

➢ Reliability: built in repetition mechanisms to ensure reliable results

➢ Detailed level of comparison: use of MAQAO/OneView to provide
several profiling levels : whole application, functions, loops and key
application characteristics.

➢ Flexible search and formatting through results

➢ Two levels of optimizations:
• automatic (compilers/compiler switches/transformations),

• recommendations for “manual” optimizations.

For more details see https://www.compqual.org/qaas_page/

QaaS Characteristics (2)

https://www.compqual.org/qaas_page/

MINIAPP RESULTS

For the miniapps used in our tests, a good description/reference is
provided on the site : https://proxyapps.exascaleproject.org/app/.

➢ AMG

➢ Cloverleaf

➢ CoMD

➢ Hacc MK

➢ MiniQMC

➢ Kripke

Miniapps

https://proxyapps.exascaleproject.org/app/

COMPILER AND COMPILER OPTIONS FOR G3 RUNS (64 cores)

PERFORMANCE OF MINIAPPS ON G3 (64 cores)

BEST: TIMING RATIOS: current timing over best timing across all compilers and compiler options.

• Green cells corresponds to best or very close to best (< 1%)

• Yellow cells correspond to performance losses between 1% and 5%

• Red cells correspond to performance losses > 5%

A FEW CONCLUSIONS

For half of the miniapp (AMG,

Cloverleaf, Min,iQMC) compiler

and compiler options have

limited impact.

For the other half, compiler

(CoMD, HACC mk, Kripke)

compiler and compiler options

have a large impact

The original compiler options are not the best choice….

Neither GCC nor ARMCLANG are always winning.

LAMMPS RESULTS

Source: https://www.lammps.org/#gsc.tab=0

➢ LAMMPS is a classical molecular dynamics code with a focus on materials
modeling. It's an acronym for Large-scale Atomic/Molecular Massively Parallel
Simulator.

➢ LAMMPS has potentials for solid-state materials (metals, semiconductors) and
soft matter (biomolecules, polymers) and coarse-grained or mesoscopic
systems. It can be used to model atoms or, more generically, as a parallel
particle simulator at the atomic, meso, or continuum scale.

➢ LAMMPS runs on single processors or in parallel using message-passing
techniques and a spatial-decomposition of the simulation domain. Many of its
models have versions that provide accelerated performance on CPUs, GPUs,
and Intel Xeon Phis. The code is designed to be easy to modify or extend with
new functionality.

LAMMPS CODE

LAMMPS on Graviton 3 (64 cores) AWS: Armclang versus GCC

BEST: TIMING RATIOS: current timing over best timing across all compilers and compiler options.

• Green cells corresponds to best or very close to best (< 1%)

• Yellow cells correspond to performance losses: 1% < and < 3%

• Red cells correspond to performance losses > 3%

LAMMPS on Graviton 3 (64 cores) AWS: Armclang versus GCC

TIMING RATIOS: current timing over best timing across all compilers and compiler options.

• Green cells corresponds to best or very close to best (< 1%)

• Yellow cells correspond to performance losses 1% < and < 5%

• Red cells correspond to performance losses > 5%

LAMMPS on Granite Rapids (256 cores) MEGWARE: ICX versus GCC

TIMING RATIOS: current timing over best timing across all compilers and compiler options.

• Green cells corresponds to best or very close to best (< 1%)

• Yellow cells correspond to performance losses 1% < and < 5%

• Red cells correspond to performance losses > 5%

LAMMPS on Granite Rapids (256 cores) MEGWARE: ICX versus GCC

TIMING RATIOS: current timing over best timing across all compilers and compiler options.

• Green cells corresponds to best or very close to best (< 1%)

• Yellow cells correspond to performance losses 1% < and < 5%

• Red cells correspond to performance losses > 5%

OpenRadioss RESULTS

Target code: OpenRadioss

Realistic data sets have been used. Due to domain decomposition, data
set size varies depending upon the number of MPI ranks used

• TAURUS (Public): 10 millions elements, reference 1.7 GB, after
partitioning for 96 MPI ranks 17 GB

Code in Fortran combining MPI + OpenMP parallelism

• Excellent MPI scaling due to very good domain decomposition

• More limited OpenMP parallelism

OUR TWO REFERENCE TESTS: 96 MPI Ranks and 48 MPI Ranks + 2
OpenMP threads per rank

26

Dataset and code parallelism

NUMERICAL ACCURACY

The code uses explicit method with very small time steps.

Accuracy and reproducibility is major concern. Therefore any code
transformation which has an impact on numerical accuracy is prohibited. For
example, fast math compiler flag and even the option enabling fused multiply
add (FMA) is prohibited

EXECUTION TIME

Due to the nature of the code (mechanical crash), various code segments are
used throughout the whole simulation => to be realistic (involving all key code
segments) the run has to be long enough…

TAURUS on 96 cores Neoverse V2 takes over 2 hours!

27

Experimental constraints

28

Link to MAQAO report

Vectorization Taurus ACfl –O3 on G4

https://datafront.maqao.org/public/OpenRadioss/TAURUS10M/G4_AWS/acfl/EO_OpenRadioss_TAURUS10M-short_g4-aws_o1_m96_acfl_engine/loops_index.html

29

Limited impact of Compiler Options

Compiler flags: ACfl versus GFortran on AWS G4

30

Limited impact of Compiler Options

➢ FOR GFortran: O2 is worse (6%), O3 no-sve is the best

GFortran compiler flags: impact on AWS G4

31

Limited impact of Compiler Options ?

➢ For ACfl: O3 no-sve is the worst (5%), O2/O3/O3 no-sve are identical and the best

ACfl compiler flags: impact on AWS G4

32

Limited impact of Compiler Options ?

➢ For GFortran: O2 is worse (6%), O3 no-sve is the best
➢ For ACfl: O3 no-sve is the worst (5%), O2/03/O3 no-sve are identical and the best
➢ ACfl is using active waiting counted as activity while GFortran is using passive waiting counted as inactivity
➢ GFortran is better than ACfl: 6%
➢ For both compilers and options: a large amount of time is spent in loops

Compiler flags: ACfl versus GFortran on AWS G4

33

Y axis: Time (s). Lower is better

X axis: functions

Every compiler option is losing sometimes, winning at other times

Compiler flags impact: GFortran on AWS G4

I7optcd function

Difference comes from a loop conditionally setting arrays values to zero

• no-sve option produces a scalar version taking ~25s

• Without excluding option, SVE version is taking ~90s

Multiple factors: scalar version can use dedicated instructions/registers
when comparing/setting with zero whereas SVE instruction set lack such
feature and requires to have every store instruction under predication

I7bucecrit function

One of the loop is vectorized in NEON ONLY if SVE is disabled
Bug/Cost model ?

34

GFortran on AWS G4: Some detailed analyses

35

Y axis: Time (s). Lower is better

X axis: functions

O3 no-sve is the compiler option with the largest impact (positive
or negative !)

Compiler flags impact: ACfl on AWS G4

36

Red Curve is Best ACfl time / Best GFortran time: greater than 1 means ACfl is slower,
lower than 1 means GFortran is slower

ACfl is faster

GFortran is faster

Y axis: Time (s). Lower is better

Best ACfl/best GFortran on AWS G4

1) Fine tuning compiler options: up to 5% performance gain

2) Fine tuning across compiler and compiler options: up to 10%
performance gain

37

Compiler Analysis of OpenRadiOss

➢ Analyze more compiler options: fastmath, funroll, etc….

➢ Automate backport from one compiler to the other: pragma insertion: if
a compiler has been able to vectorize a loop, the information could be
provided through pragmas to compilers which were unsuccessful in
vectorizing the same loop.

➢ Interact with compiler developers to refine/improve cost models

➢ Interact with application developers to use this technology

38

Future work

CONCLUSIONS

➢ Non uniform behavior of compiler options across subroutines/loops: some
options perform better with some subroutines

➢ Non uniform behavior between compilers across subroutines/loops: no silver
bullet compiler….

➢ Non uniform means non negligible performance difference: these
performance difference are worth exploring/exploiting

Above all of these are well known “generic facts”

40

Conclusions

➢ Non uniform behavior of compiler options across subroutines/loops: some
options perform better with some subroutines

➢ Non uniform behavior between compilers across subroutines/loops: no silver
bullet compiler….

➢ Non uniform means non negligible performance difference: these
performance difference are worth exploring/exploiting

Above all of these are well known “generic facts” but MAQAO/QaaS allows to
bring in:

➢ Quantitative estimation : essential for driving optimization

➢ Explanation of performance differences: this opens the door to backport
optimization between compilers

41

Conclusions

Contact:
https://www.pop-coe.eu
pop@bsc.es
@POP_HPC
youtube.com/POPHPC

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101143931. The JU receives
support from the European Union’s Horizon Europe research and innovation programme and Spain, Germany, France, Portugal and the Czech Republic.

Performance Optimisation and Productivity 3
A Centre of Excellence in HPC

Backup

Results

A FEW SPECIFIC MAQAO METRICS (1)

First, most of our dynamic measurements are based on sampling.

We distinguish and measure for every thread two types of wasted time

• Inactive time (obtained by comparing wall clock with active time = sum of collected
samples)

• Time spent in OpenMP, MPI, Pthreads activity

With these measurements we generate 4 essential metrics:

1. Average active time: Sum over all threads of their active time divided by thread count.
IDEAL = total execution time

2. Activity ratio : Sum over all threads of their active time divided by the sum of their wall
time. IDEAL: 100%

3. Average active number of threads : Sum over all threads of their active time divided by
longest wall clock time: IDEAL = number of threads used

4. Affinity stability: evaluates percentage of time spent without thread migration between
physical cores: IDEAL 100%

44

A FEW SPECIFIC MAQAO METRICS (2)

For each thread, we gather a full picture of their activity: time spent in various

functions including time spent in various libraries: OpenMP, MPI and Pthreads.

From these measurements we extrapolate impact of time spent in

OpenMP/MPI/Pthread libraries and load distribution.

Perfect OpenMP + MPI + Pthread: max (Original Thread time)/ max (Stripped

Thread Time): Stripped  time spent in OpenMP/MPI/Pthread set to 0.

Perfect OpenMP + MPI + Pthread + Perfect Load Distribution: max (Original

Thread time)/ average (Stripped Thread Time):

A performance optimization goal is to have these 2 metrics under 1.1.

45

OpenMP

Results

Backup

Slides

G4 NEONM11 runs: 1 MPI Rank, 96 OpenMP threads, ACFL –O3 (1/3)

https://datafront.exascale-

computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-

full_G4-aws_o96_m1_acfl-o3/index.html

Large gap indicates a large

amount of thread inactive time

Low numbers: poor resource usage

G4 NEONM11 runs: 1 MPI Rank, 96 OpenMP threads, ACFL –O3 (2/3)

G4 NEONM11 runs: 1 MPI Rank, 96 OpenMP threads, ACFL – O3 (3/3)

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-

aws_o96_m1_acfl-o3/fcts_and_loops.html

MAIN ISSUES

• critical section (OMP CRITICAL) in i7buce_crit

• locks (OMP_SET_LOCK) mostly from i7optcd (lockon.inc:28)

MPI Results

G4 NEONM11 runs: 96 MPI Ranks, 1 OpenMP threads, ACFL – O3 (1/3)

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-

aws_o1_m96_acfl-o3/

Small gap indicates a small

amount of thread inactive time

High numbers: good resource

usage

G4 NEONM11 runs: 96 MPI Ranks, 1 OpenMP threads, ACFL – O3 (2/3)

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-

aws_o1_m96_acfl-o3/

G4 NEONM11 runs: 96 MPI Ranks, 1 OpenMP threads, ACFL – O3 (3/3)

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-aws_o1_m96_acfl-

o3/fcts_and_loops.html

AMPERE SKYCAB runs: 80/160/3220/640 MPI Ranks, 1 OpenMP threads, ACFL – O3
(1/2)

r0: 1 node (80 cores), r1: 2 nodes (160 cores), r2 (320 cores), r3 (640 cores)

https://datafront.exascale-computing.eu/public/OpenRadioss/compare/OpenRadioss_SkyCAB_turpan_o3_o1_m80-

640_acfl_compare/

AMPERE Skycab runs: 80/160/320/640MPI Ranks, 1 OpenMP threads, ACFL – O3 (2/2)

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-aws_o1_m96_acfl-

o3/fcts_and_loops.html

r0 : 1 node (80 cores),

r1 : 2 nodes (160 cores),

r2 : 4 nodes (320 cores),

r3 : 8 nodes (640 cores)

G4 NEONM11 runs: hybrid, ACFL – O3 (1/2)

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-aws_cr_o1-96_m96-

1_acfl-o3/

G4 NEONM11 runs: hybrid, ACFL – O3 (2/2)

G4 NEONM11 runs: hybrid, 8 MPI ranks, 12 OMP threads ACFL – O3
(1/2)

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/EO_OpenRadioss_NEON1M11-full_G4-

aws_o12_m8_acfl-o3/index.html

G4 NEONM11 runs: hybrid, 8 MPI ranks, 12 OMP threads ACFL – O3
(2/2)

https://datafront.exascale-

computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/EO_OpenRadioss_NEON1M11-full_G4-

aws_o12_m8_acfl-o3/index.html

G4 TAURUS runs: hybrid, ACFL – O3 (1/2)

https://datafront.exascale-computing.eu/public/OpenRadioss/TAURUS10M/G4_AWS/acfl/OpenRadioss_TAURUS10M-short_g4-aws_o1-8_m12-

96_acfl_engine/

G4 TAURUS runs: hybrid, ACFL – O3 (2/2)

https://datafront.exascale-computing.eu/public/OpenRadioss/TAURUS10M/G4_AWS/acfl/OpenRadioss_TAURUS10M-short_g4-

aws_o1-8_m12-96_acfl_engine/

GLOBAL CHARACTERISTICS TAURUS ACFL –O3 ON G4 (2)

63
https://datafront.exascale-computing.eu/public/OpenRadioss/TAURUS10M/G4_AWS/gnu/OpenRadioss_TAURUS10M-

short_g4-aws_o2_m48_gnu_engine/

LAMMPS on Graviton 3 (64 cores) AWS: Armclang versus GCC

BEST: TIMING RATIOS: current timing over best timing across all compilers and compiler options.

• Green cells corresponds to best or very close to best (< 1%)

• Yellow cells correspond to performance losses < 3%

• Red cells correspond to performance losses > 3%

Neoverse N1: Arm C/C++/Fortran Compiler version 22.1 (build number 12)
(based on LLVM 13.0.1)

Neoverse V1/V2: ACfL 24.10, GNU Fortran2008 13.2.0

Compiler options: O2, O3, O3 + no-sve, O3 + no-sve2

TALK FOCUS: AWS Graviton 4 Results

65

Hardware/Software platforms

