

Exploring compiler behavior on applications from Miniapps up to large scale applications on modern processors

Hugo_Bolloré, Emmanuel Oseret, Kévin Camus, Cédric Valensi, William Jalby, Université de Versailles Saint-Quentinen-Yvelines

ACKNOWLEDGEMENTS: ALTAIR, AWS, MEGWARE, ATOS/EVIDEN and CALMIP

Objectives

The first goal is to analyze and assess quantitatively, compiler and compiler options impact on performance.

The ultimate goal is to optimize application performance

- Identify strengths/weakness of various compilers options and compilers
- Leverage optimizations between compilers
- Study ISA impact
- Develop corresponding methodology and test on a real industrial strength application

TALK OVERVIEW

- Methodology (MAQAO/ONEVIEW/QaaS)
- Mini App results
- LAMMPS Results
- OpenRadioss results
- Conclusion

METHODOLOGY

Methodology (1)

Standard case: Compiler A with options OPT1 is slightly faster than compiler B with options OPT2.

Easy (superficial) conclusion: use Compiler A with options OPT1

Better (more complex) approach: analyze compiler behavior

ISSUE: Compiler A can outperform compiler B for Function FOO and the situation can be reversed for another Function BOO. There can be compensation between various functions.

Performance analysis has to go down at least to the function level and very often down to the loop level.

Due to the number of functions/loops involved, Analysis/assessment has to be automated.

Methodology (2)

Timing will be performed at three levels: whole app, function level, loop level

Goals require detailed analysis of compiler outputs: assembly code

Relying on MAQAO/ONE View capabilities

- To evaluate capabilities, weakness and strengths of various ASM codes using simplified simulators
- To perform matching between source code and different ASM variants: essential requisite to analyze advanced compiler strategies multiversioning

Analyzing Code Quality (1)

Focus on loops: innermost/in between/outermost

Evaluate ASM using CQA (Code Quality Analysis) included in MAQAO.

- Generic topics of interest
 - Port / Functional Units usage
 - Vectorization
 - Instruction set use
 - Vectorization Roadblocks
 - Data access
- Two types of analysis: Static at the ASM level and Dynamic requiring measurement

IMPORTANT: By looking directly at ASM, both compiler mistakes but also source code issues will be taken into account.

Analyzing Code Quality (2)

Classify performance issues into 5 main categories

- 1. Loop computation: issues related to the computation organization (FMA, SQRT/DIV, etc...)
- 2. **Control Flow:** issues relevant to control (branches, call,)
- 3. **Data access:** issues essentially related to memory operations (stride, indirect, spill/fill,)
- 4. **Vectorization roadblocks:** issues preventing vectorization (complex control flow, ...)
- 5. **Inefficient vectorization:** issues related to vectorization quality (vector length, masked, ...)

Loop ID	Analysis	Penalty Score
▼ Loop 29963 - engine_linuxa64_gf_ompi	Execution Time: 1 % - Vectorization Ratio: 21.05 % - Vector Length Use: 59.87 %	
▼ Loop Computation Issues		6
0	[SA] Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA - Reorganize arithmetic expressions to exhibit potential for FMA. This issue costs 4 points.	4
0	[SA] Presence of a large number of scalar integer instructions - Simplify loop structure, perform loop splitting or perform unroll and jam. This issue costs 2 points.	2
▼ Control Flow Issues		2
0	[SA] Several paths (2 paths) - Simplify control structure or force the compiler to use masked instructions. There are 2 issues (= paths) costing 1 point each.	2
▼ Data Access Issues		12
0	[SA] Presence of constant non unit stride data access - Use array restructuring, perform loop interchange or use gather instructions to lower a bit the cost. There are 2 issues (= data accesses) costing 2 point each.	4
0	[SA] Presence of indirect accesses - Use array restructuring or gather instructions to lower the cost. There are 2 issues (= indirect data accesses) costing 4 point each.	8
► Vectorization Roadblocks		14

Global Characteristics: OneView typical output (1)

Clabal Maratan	0
Global Metrics	•
Total Time (s)	7.51 E3
Max (Thread Active Time) (s)	7.42 E3
Average Active Time (s)	6.77 E3
Activity Ratio (%)	90.2
Average number of active threads	86.565
Affinity Stability (%)	100.0
Time in analyzed loops (%)	85.8
Time in analyzed innermost loops (%)	81.3
Time in user code (%)	87.7
Compilation Options Score (%)	74.9
Array Access Efficiency (%)	70.6

48 MPI Ranks + 2 OMP Threads/ranks

4 essential metrics:

- Average active time: Sum over all threads of their active time divided by thread count. IDEAL = total execution time
- 2. Activity ratio: Sum over all threads of their active time divided by the sum of their wall time. IDEAL: 100%
- 3. Average active number of threads: Sum over all threads of their active time divided by longest wall clock time: IDEAL = number of threads used
- **4. Affinity stability:** evaluates percentage of time spent without thread migration between physical cores: **IDEAL 100%**

Link to MAQAO report

OpenRadioss Taurus GFortran -O3 on G4

Global Characteristics: OneView typical output (2)

Perfect Flow Complexity 1.05									
Perfect Flow Complexity		1.05							
Perfect OpenMP + MPI +	Pthread	1.05							
Perfect OpenMP + MPI + Pthread + Perfect Load Distribution									
No Scalar Integer	Potential Speedup	1.20							
	Nb Loops to get 80%	32							
FP Vectorised	Potential Speedup	1.11							
rr vectoriseu	Nb Loops to get 80%	24							
Fully Vactorised	Potential Speedup	1.28							
Fully Vectorised	Nb Loops to get 80%	41							
FP Arithmetic Only	Potential Speedup	1.56							
FF Antillieuc Only	Nb Loops to get 80%	41							

For each thread, we gather a full picture of their activity: time spent in various functions including time spent in various libraries: OpenMP, MPI and Pthreads.

From these measurements we extrapolate impact of time spent in OpenMP/MPI/Pthread libraries and load distribution.

Perfect OpenMP + MPI + Pthread: max (Original Thread time)/ max (Stripped Thread Time): Stripped ⇔ time spent in OpenMP/MPI/Pthread set to 0.

48 MPI Ranks + 2 OMP Threads/ranks

Perfect OpenMP + MPI + Pthread + Perfect Load Distribution: max (Original Thread time)/ average (Stripped Thread Time):

OpenRadioss Taurus GFortran –O3 on G4

A performance optimization goal is to have these 2 metrics under 1.1

https://datafront.exascale-computing.eu/public/OpenRadioss/TAURUS10M/G4_AWS/gnu/OpenRadioss_TAURUS10M-short_g4-aws_o2_m48_gnu_engine/

QaaS Characteristics (1)

QaaS is an Open Source collaborative project aiming at providing a software environment exploring (understanding/characterizing) applications/systems performance, the ultimate goal being application optimization.

QaaS (Quality as a Service) relies on the following features

- Automation: pushed as much as possible. Large amount of data automatically generated
- Systematic exploration of key parameters space:
 - hardware platforms (AMD, ARM (Ampere, Grace, G3/G4), INTEL, etc...)
 - Compilers and compiler settings
 - number of cores and core mapping, more generally runtime and run time settings
 - More generally: software stack parameters

QaaS Characteristics (2)

- Uniform exploration: to enable systematic comparison
- > Reliability: built in repetition mechanisms to ensure reliable results
- Detailed level of comparison: use of MAQAO/OneView to provide several profiling levels: whole application, functions, loops and key application characteristics.
- > Flexible search and formatting through results
- Two levels of optimizations:
 - automatic (compilers/compiler switches/transformations),
 - recommendations for "manual" optimizations.

MINIAPP RESULTS

Miniapps

For the miniapps used in our tests, a good description/reference is provided on the site: https://proxyapps.exascaleproject.org/app/.

- > AMG
- Cloverleaf
- > CoMD
- > Hacc MK
- > MiniQMC
- Kripke

COMPILER AND COMPILER OPTIONS FOR G3 RUNS (64 cores)

_								
orig	default							
gcc	default							
armclang 1	O2 -mcpu=r	native -armpl						
armclang 2	O2 -mcpu=n	ative -fno-vect	torize -armpl					
armclang 3	O3 -mcpu=n	ative -armpl						
armclang 4	O3 -mcpu=n	O3 -mcpu=native -fno-vectorize -armpl						
armclang 5	Ofast -mcpu=	native -armpl						
armclang 6	Ofast -mcpu=	native -fno-ve	ctorize -armpl					
gcc 1	O2 -mcpu=na	tive -funroll-lo	ops -larmpl					
gcc 2	O2 -mcpu=	native -fno-tr	ee-vectorize -f	no-openmp-si	md -funroll-lo	ops -larmpl		
gcc 3	O3 -mcpu=n	ative -funroll-l	oops -larmpl					
gcc 4	O3 -mcpu=	native -fno-tr	ee-vectorize -f	no-openmp-si	md -funroll-lo	ops -larmpl		
gcc 5	Ofast -mcpu=native -funroll-loops -larmpl							
gcc 6	Ofast -mcpu	u=native -fno-t	ree-vectorize	-fno-openmp-s	simd -funroll-lo	oops -larmpl		

PERFORMANCE OF MINIAPPS ON G3 (64 cores)

	AMG	CLOVERLEAF	COMD	HACC mk	MINIQMC	KRIPKE
orig	1,01	1,01	1,10	4,40	1,00	1,02
gcc	1,00	1,00	1,00	1,00	1,01	2,13
armclang 1	1,02	1,02	1,08	4,39	1,00	1,01
armclang 2	1,01	1,02	1,07	9,01	1,01	1,00
armclang 3	1,01	1,02	1,09	4,39	1,00	1,01
armclang 4	1,01	1,01	1,09	9,01	1,00	1,01
armclang 5	1,01	1,01	1,04	1,44	1,00	1,23
armclang 6	1,01	1,01	1,04	2,50	1,02	1,00
gcc 1	1,02	1,00	1,02	2,62	1,02	1,23
gcc 2	1,03	1,00	1,02	2,62	1,02	1,23
gcc 3	1,00	1,00	1,00	1,00	1,01	2,00
gcc 4	1,00	1,00	1,00	2,62	1,01	1,23
gcc 5	1,00	1,00	1,04	1,00	1,01	1,97
gcc 6	1,00	1,00	1,02	2,62	1,01	1,23

BEST: TIMING RATIOS: current timing over best timing across all compilers and compiler options.

- Green cells corresponds to best or very close to best (< 1%)
- Yellow cells correspond to performance losses between 1% and 5%
- Red cells correspond to performance losses > 5%

A FEW CONCLUSIONS

	AMG	CLOVERLEAF	COMD	HACC mk	MINIQMC	KRIPKE
orig	1,01	1,01	1,10	4,40	1,00	1,02
gcc	1,00	1,00	1,00	1,00	1,01	2,13
armclang 1	1,02	1,02	1,08	4,39	1,00	1,01
armclang 2	1,01	1,02	1,07	9,01	1,01	1,00
armclang 3	1,01	1,02	1,09	4,39	1,00	1,01
armclang 4	1,01	1,01	1,09	9,01	1,00	1,01
armclang 5	1,01	1,01	1,04	1,44	1,00	1,23
armclang 6	1,01	1,01	1,04	2,50	1,02	1,00
gcc 1	1,02	1,00	1,02	2,62	1,02	1,23
gcc 2	1,03	1,00	1,02	2,62	1,02	1,2 3
gcc 3	1,00	1,00	1,00	1,00	1,01	2,00
gcc 4	1,00	1,00	1,00	2,62	1,01	1,23
gcc 5	1,00	1,00	1,04	1,00	1,01	1,97
gcc 6	1,00	1,00	1,02	2,62	1,01	1,23

For half of the miniapp (AMG, Cloverleaf, Min,iQMC) compiler and compiler options have limited impact.

For the other half, compiler (CoMD, HACC mk, Kripke) compiler and compiler options have a large impact

The original compiler options are not the best choice....

Neither GCC nor ARMCLANG are always winning.

LAMMPS RESULTS

LAMMPS CODE

Source: https://www.lammps.org/#gsc.tab=0

- LAMMPS is a classical molecular dynamics code with a focus on materials modeling. It's an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator.
- LAMMPS has potentials for solid-state materials (metals, semiconductors) and soft matter (biomolecules, polymers) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale.
- LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. Many of its models have versions that provide accelerated performance on CPUs, GPUs, and Intel Xeon Phis. The code is designed to be easy to modify or extend with new functionality.

LAMMPS on Graviton 3 (64 cores) AWS: Armclang versus GCC

	ARMCLANG 1 - O3 - mcpu=neoverse- v1 -armpl -ffast- math		v1	v1 -armpl -fno-			GCC2 -O3 - mcpu=neovers e-v1 -larmpl - msve-vector- bits=256 - funroll-loops - ffast-math	se-v1 -larmpl - msve-vector- bits=128 -	v1+nosve+no sve2 -larmpl -	se-v1 -larmpl -	se-v1 -larmpl - funroll-loops - ffast-math
Metric	ARMCLANG 1	ARMCLANG 2	ARMCLANG 4	ARMCLANG 5	ARMCLANG 6	GCC 1	GCC 2	GCC 3	GCC 4	GCC 5	GCC 6
Total Time (s)	420,57	422,54	423,42	430,12	421,46	434,58	433,02	433,38	434,74	432,86	440,65
Best	1,00	1,00	1,01	1,02	1,00	1,03	1,03	1,03	1,03	1,03	1,05
Max (Thread Active Time) (s)	418,66	420,65	421,57	428,29	419,53	432,68	431,32	431,52	432,7	431,22	438,59
Average Active Time (s)	418,43	420,29	421,23	427,84	419,19	432,35	430,79	431,13	432,43	430,67	438,33
Activity Ratio (%)	99,5	99,5	99,5	99,5	99,5	99,5	99,5	99,5	99,5	99,5	99,5
Average number of active threads	63,67	63,66	63,67	63,66	63,66	63,67	63,67	63,67	63,66	63,68	63,66
Affinity Stability (%)	99,9	100	99,9	100	99,9	99,9	100	100	99,9	100	99,9

BEST: TIMING RATIOS: current timing over best timing across all compilers and compiler options.

- Green cells corresponds to best or very close to best (< 1%)
- Yellow cells correspond to performance losses: 1% < and < 3%
- Red cells correspond to performance losses > 3%

LAMMPS on Graviton 3 (64 cores) AWS: Armclang versus GCC

	ARMCLANG 1	ARMCLANG 2	ARMCLANG 4	ARMCLANG 5	ARMCLANG 6	GCC 1	GCC 2	GCC 3	GCC 4	GCC 5	GCC 6
LAMMPS_NS::PairEAM::compute(int, int)	1,00	1,00	1,01	1,02	1,00	1,03	1,04	1,04	1,04	1,03	1,05
LAMMPS_NS::NPairBin<1, 1, 0, 0, 1>::build(LAMMPS_NS::NeighList*	1,00	1,01	1,00	1,03	1,01	1,05	1,02	1,02	1,03	1,03	1,04
LAMMPS_NS::FixNVE::initial_integrate(int)	1,00	1,00	1,00	1,00	1,01	1,00	1,00	1,00	1,00	1,00	1,00
LAMMPS_NS::FixNVE::final_integrate()	1,00	1,00	1,00	1,00	1,00	1,01	1,00	1,01	1,00	1,00	1,00
LAMMPS_NS::CommBrick::borders()	1,02	1,00	1,01	1,01	1,01	1,01	1,00	1,01	1,03	1,00	1,01
LAMMPS_NS::AtomVec::pack_comm(int, int*, double*, int, int*)	1,04	1,05	1,04	1,04	1,03	1,01	1,03	1,02	1,01	1,06	1,00
LAMMPS_NS::AtomVec::unpack_reverse(int, int*, double*)	1,08	1,10	1,09	1,10	1,10	1,00	1,05	1,01	1,00	1,02	1,05
LAMMPS_NS::Neighbor::check_distance()	1,00	1,00	1,01	1,00	1,00	1,01	1,01	1,00	1,00	1,00	1,00

TIMING RATIOS: current timing over best timing across all compilers and compiler options.

- Green cells corresponds to best or very close to best (< 1%)
- Yellow cells correspond to performance losses 1% < and < 5%
- Red cells correspond to performance losses > 5%

LAMMPS on Granite Rapids (256 cores) MEGWARE: ICX versus GCC

	S	TANDARD LAN	IMPS PACKAG	GE	X86	OPTIMIZED LA	AMMPS PACK	AGE
Metric	orig_default	gcc_default	icx_2	gcc_5	orig_default	gcc_default	icx_2	gcc_7
Total Time (s)	107,83	112,62	108,66	107,06	50,75	89,41	51,02	86,55
BEST	2,12	2,22	2,14	2,11	1,00	1,76	1,01	1,71
Max (Thread Active Time) (s)	92,39	99,71	93,2	95,12	34,68	77,39	34,91	75,07
Average Active Time (s)	91,71	99,38	92,5	95,04	34,05	76,94	34,19	74,69
Activity Ratio (%)	85,6	88,7	85,3	89,4	68	86,6	67,4	87
Average number of active threads	218	226	218	227	172	220	172	221
Affinity Stability (%)	87,5	89,3	87,1	90,2	71,8	87,4	71,2	87,8
Time in analyzed loops (%)	90,6	90,2	91	92,6	84,5	91	84,9	90,7
Time in analyzed innermost loops (%)	87,3	87,1	87,7	88,2	57	88,5	57,4	86,1
Time in user code (%)	90,9	90,5	91,3	92,9	88,8	91,2	89,1	92,7
Compilation Options Score (%)	100	50	100	100	100	50	100	87,5
Array Access Efficiency (%)	51,7	45,5	51,9	56,7	50,8	65,5	51,2	71,1

TIMING RATIOS: current timing over best timing across all compilers and compiler options.

- Green cells corresponds to best or very close to best (< 1%)
- Yellow cells correspond to performance losses 1% < and < 5%
- Red cells correspond to performance losses > 5%

LAMMPS on Granite Rapids (256 cores) MEGWARE: ICX versus GCC

		S ⁻	TANDARD LAN	IMPS PACKAG	GE	X86	OPTIMIZED LA	AMMPS PACK	AGE
	Metric	orig_default	gcc_default	icx_2	gcc_5	orig_default	gcc_default	icx_2	gcc_7
To	otal Time (s)	107,83	112,62	108,66	107,06	50,75	89,41	51,02	86,55
	BEST	2,12	2,22	2,14	2,11	1,00	1,76	1,01	1,71
Pote	ential Speedups								
Perfect Flow Complexity		3,06	3,5	3,08	3,59	1,01	1,01	1,01	1,97
Perfect Oper	nMP/MPI/Pthread/TBB	1,02	1,02	1,02	1,01	1,06	1,02	1,07	1,02
-	nMP/MPI/Pthread/TBB	1,1	1,1	1,1	1,07	1,11	1,09	1,11	1,07
No Scalar	Potential Speedup	1,3	1,21	1,3	1,3	1,06	1,06	1,06	1,07
Integer	Nb Loops to get 80%	3	3	3	3	7	6	7	6
FP	Potential Speedup	1,66	1,83	1,67	1,64	1,01	2,05	1,01	1,64
Vectorised	Nb Loops to get 80%	3	3	3	3	4	5	4	5
Fully	Potential Speedup	3,63	4,27	3,67	4,41	1,1	5,95	1,1	5,88
Vectorised	Nb Loops to get 80%	4	5	5	6	15	17	15	18
Only FP	Potential Speedup	1,5	1,28	1,5	1,41	2,41	1,11	2,42	1,2
Arithmetic	Nb Loops to get 80%	3	3	3	4	12	10	12	12

TIMING RATIOS: current timing over best timing across all compilers and compiler options.

- Green cells corresponds to best or very close to best (< 1%)
- Yellow cells correspond to performance losses 1% < and < 5%
- Red cells correspond to performance losses > 5%

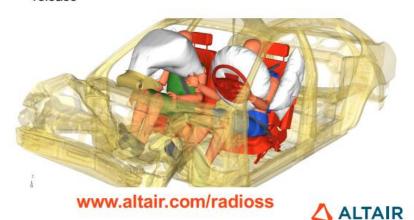
OpenRadioss RESULTS

Target code: OpenRadioss

O Altair Engineering Inc. All rights reserved.

Altair[®] Radioss[®] & OpenRadioss[™] The Industry Standard Open Platform for Crash & Impact

OpenRadioss™ Open-Source Version


- Source code publicly accessible from: https://github.com/OpenRadioss
- Upstream version, with contributions from a fast-growing worldwide community
- Precompiled Linux & Windows executables to run latest builds with no license check
- Support from the community, via forum

www.openradioss.org

Altair® Radioss® Commercial Version

- Commercial releases with extensive QA, professional support, documentation and maintenance priority
- Available under Altair Units license
- Encrypted models for dummies & barriers
- Channels valuable community contributions into industrial release

Dataset and code parallelism

Realistic data sets have been used. Due to domain decomposition, data set size varies depending upon the number of MPI ranks used

 TAURUS (Public): 10 millions elements, reference 1.7 GB, after partitioning for 96 MPI ranks 17 GB

Code in Fortran combining MPI + OpenMP parallelism

- Excellent MPI scaling due to very good domain decomposition
- More limited OpenMP parallelism

OUR TWO REFERENCE TESTS: 96 MPI Ranks and 48 MPI Ranks + 2 OpenMP threads per rank

Experimental constraints

NUMERICAL ACCURACY

The code uses explicit method with very small time steps.

Accuracy and reproducibility is major concern. Therefore any code transformation which has an impact on numerical accuracy is prohibited. For example, fast math compiler flag and even the option enabling fused multiply add (FMA) is prohibited

EXECUTION TIME

Due to the nature of the code (mechanical crash), various code segments are used throughout the whole simulation => to be realistic (involving all key code segments) the run has to be long enough...

TAURUS on 96 cores Neoverse V2 takes over 2 hours!

Vectorization Taurus ACfl –O3 on G4

Loop id	Source Location	Source Function	Level	Exclusive Coverage mpi_96_ranks_omp_1_thread (%)	Vectorization Ratio (%)	Vector Length Use (%)
40382	engine_linuxa64_ompi_O3 - i7opt cd.F:202-243 []	i7optcd	Innermost	5.06	48.11	66.04
13300	0J.F:1205-1466 []	czprojn	Innermost	3.09	0	49.8
6105	engine_linuxa64_ompi_O3 - assp ar4.F:165-173		Innermost	2.73	45.45	72.73
44945	engine_linuxa64_ompi_O3 - sigep s36c.F:269-269	sigeps36c	Single	2.55	97.83	98.91
	engine_linuxa64_ompi_O3 - cupd tn3.F:653-692		Single	2.36	25.96	62.5
	e_crit.F:131-150		Outermost	1.97	27.45	58.33
	engine_linuxa64_ompi_O3 - depl a.F:95-104		Innermost	1.63	42.11	71.05
	t.F:157-159		Innermost	1.54	88.89	100
52519	engine_linuxa64_ompi_O3 - mula wc.F:2378-2384	mulawc	Innermost	1.53	59.02	79.1
6507	engine_linuxa64_ompi_O3 - vites se.F:80-86	vitesse	Innermost	1.40	46.15	72.12
13455	engine_linuxa64_ompi_O3 - czfin tn.F:355-443	czfintn1	Single	1.36	92.36	96.84

Link to MAQAO report

Compiler flags: ACfl versus GFortran on AWS G4

Limited impact of Compiler Options

Global metric		GI	VU			Ad	:fL	
Global metric	O2	O3	O3 no SVE2	O3 no SVE	O2	O3	O3 no SVE2	O3 no SVE
Total Time (s)	7.89 E3	7.51 E3	7.65 E3	7.41 E3	7.92 E3	7.91 E3	7.92 E3	8.26 E3
Max (Thread Active Time) (s)	7.71 E3	7.42 E3	7.47 E3	7.33 E3	7.89 E3	7.88 E3	7.88 E3	8.07 E3
Average Active Time (s)	7.02 E3	6.77 E3	6.78 E3	6.66 E3	7.77 E3	7.77 E3	7.77 E3	7.86 E3
Activity Ratio (%)	89.0	90.2	88.7	90.0	98.2	98.1	98.1	95.9
Average number of active threads	85.4	86.7	85.1	86.3	94.210	94.193	94.179	91.284
Affinity Stability (%)	99.2	100.0	99.1	100.0	100.0	100.0	100.0	98.5
Time in analyzed loops (%)	86.4	85.8	85.7	85.4	78.1	78.0	77.8	76.3
Time in analyzed innermost loops (%)	78.0	81.3	81.2	80.9	70.5	71.4	71.2	69.6
Time in user code (%)	88.1	87.7	87.6	87.4	80.9	80.8	80.6	79.2
Compilation Options Score (%)	62.5	74.9	74.9	74.9	99.5	99.5	99.5	99.5
Array Access Efficiency (%)	62.0	70.6	70.6	74.0	66.9	65.1	65.1	66.8

GFortran compiler flags: impact on AWS G4

Limited impact of Compiler Options

Global metric	GNU				AcfL				
	O2	O3	O3 no SVE2	O3 no SVE	O2	O3	O3 no SVE2	O3 no SVE	
Total Time (s)	7.89 E3	7.51 E3	7.65 E3	7.41 E3	7.92 E3	7.91 E3	7.92 E3	8.26 E3	
Max (Thread Active Time) (s)	7.71 E3	7.42 E3	7.47 E3	7.33 E3	7.89 E3	7.88 E3	7.88 E3	8.07 E3	
Average Active Time (s)	7.02 E3	6.77 E3	6.78 E3	6.66 E3	7.77 E3	7.77 E3	7.77 E3	7.86 E3	
Activity Ratio (%)	89.0	90.2	88.7	90.0	98.2	98.1	98.1	95.9	
Average number of active threads	85.4	86.7	85.1	86.3	94.210	94.193	94.179	91.284	
Affinity Stability (%)	99.2	100.0	99.1	100.0	100.0	100.0	100.0	98.5	
Time in analyzed loops (%)	86.4	85.8	85.7	85.4	78.1	78.0	77.8	76.3	
Time in analyzed innermost loops (%)	78.0	81.3	81.2	80.9	70.5	71.4	71.2	69.6	
Time in user code (%)	88.1	87.7	87.6	87.4	80.9	80.8	80.6	79.2	
Compilation Options Score (%)	62.5	74.9	74.9	74.9	99.5	99.5	99.5	99.5	
Array Access Efficiency (%)	62.0	70.6	70.6	74.0	66.9	65.1	65.1	66.8	

> FOR GFortran: O2 is worse (6%), O3 no-sve is the best

ACfl compiler flags: impact on AWS G4

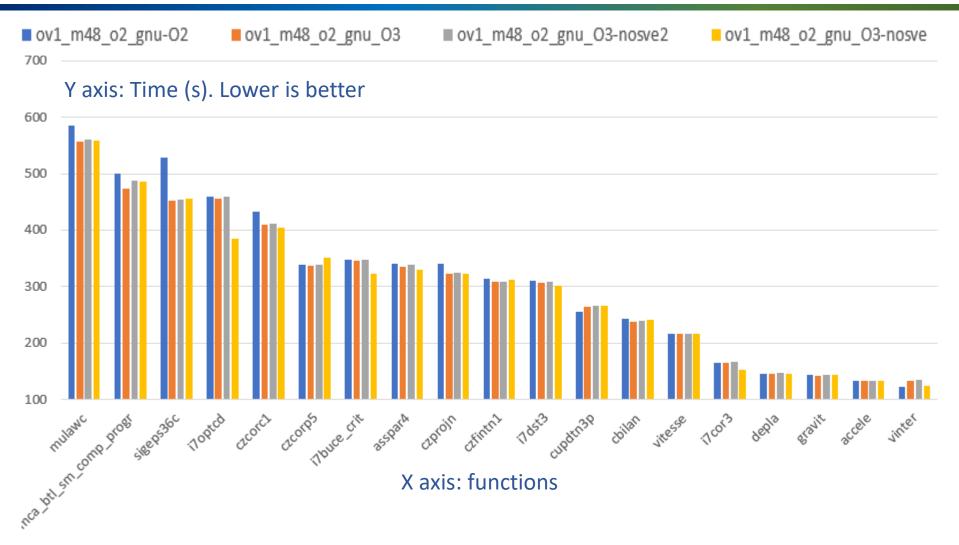
Limited impact of Compiler Options?

Global metric	GNU				AcfL			
	O2	O3	O3 no SVE2	O3 no SVE	O2	O3	O3 no SVE2	O3 no SVE
Total Time (s)	7.89 E3	7.51 E3	7.65 E3	7.41 E3	7.92 E3	7.91 E3	7.92 E3	8.26 E3
Max (Thread Active Time) (s)	7.71 E3	7.42 E3	7.47 E3	7.33 E3	/.89 E3	/.୪୪ ೬૩	/.୪୪ ೬૩	8.07 E3
Average Active Time (s)	7.02 E3	6.77 E3	6.78 E3	6.66 E3	7.77 E3	7.77 E3	7.77 E3	7.86 E3
Activity Ratio (%)	89.0	90.2	88.7	90.0	98.2	98.1	98.1	95.9
Average number of active threads	85.4	86.7	85.1	86.3	94.210	94.193	94.179	91.284
Affinity Stability (%)	99.2	100.0	99.1	100.0	100.0	100.0	100.0	98.5
Time in analyzed loops (%)	86.4	85.8	85.7	85.4	78.1	78.0	77.8	76.3
Time in analyzed innermost loops (%)	78.0	81.3	81.2	80.9	70.5	71.4	71.2	69.6
Time in user code (%)	88.1	87.7	87.6	87.4	80.9	80.8	80.6	79.2
Compilation Options Score (%)	62.5	74.9	74.9	74.9	99.5	99.5	99.5	99.5
Array Access Efficiency (%)	62.0	70.6	70.6	74.0	66.9	65.1	65.1	66.8

For ACfl: O3 no-sve is the worst (5%), O2/O3/O3 no-sve are identical and the best

Compiler flags: ACfl versus GFortran on AWS G4

Limited impact of Compiler Options?


Global metric		GNU				AcfL				
	O2	O3	O3 no SVE2	O3 no SVE	O2	O3	O3 no SVE2	O3 no SVE		
Total Time (s)	7.89 E3	7.51 E3	7.65 E3	7.41 E3	7.92 E3	7.91 E3	7.92 E3	8.26 E3		
Max (Thread Active Time) (s)	7.71 E3	7.42 E3	7.47 E3	7.33 E3	7.89 E3	7.88 E3	7.88 E3	8.07 E3		
Average Active Time (s)	7.02 E3	6.77 E3	6.78 E3	6.66 E3	7.77 E3	7.77 E3	7.77 E3	7.86 E3		
Activity Ratio (%)	89.0	90.2	88.7	90.0	98.2	98.1	98.1	95.9		
Average number of active threads	85.4	86.7	85.1	86.3	94.210	94.193	94.179	91.284		
Affinity Stability (%)	99.2	100.0	99.1	100.0	100.0	100.0	100.0	98.5		
Time in analyzed loops (%)	86.4	85.8	85.7	85.4	78.1	78.0	77.8	76.3		
Time in analyzed innermost loops (%)	78.0	81.3	81.2	80.9	70.5	71.4	71.2	69.6		
Time in user code (%)	88.1	87.7	87.6	87.4	80.9	80.8	80.6	79.2		
Compilation Options Score (%)	62.5	74.9	74.9	74.9	99.5	99.5	99.5	99.5		
Array Access Efficiency (%)	62.0	70.6	70.6	74.0	66.9	65.1	65.1	66.8		

- For GFortran: O2 is worse (6%), O3 no-sve is the best
- For ACfl: O3 no-sve is the worst (5%), O2/03/O3 no-sve are identical and the best
- > ACfl is using active waiting counted as activity while GFortran is using passive waiting counted as inactivity
- > GFortran is better than ACfl: 6%
- For both compilers and options: a large amount of time is spent in loops

Compiler flags impact: GFortran on AWS G4

Every compiler option is losing sometimes, winning at other times

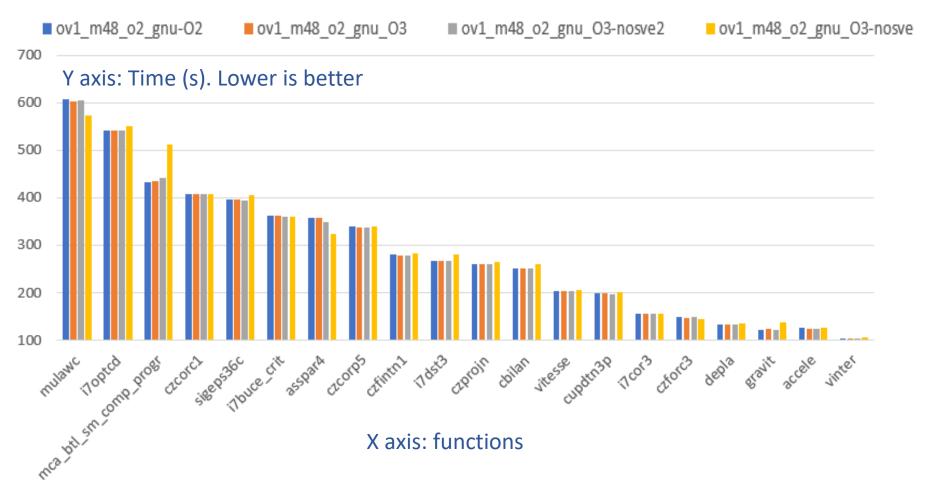
GFortran on AWS G4: Some detailed analyses

17optcd function

Difference comes from a loop conditionally setting arrays values to zero

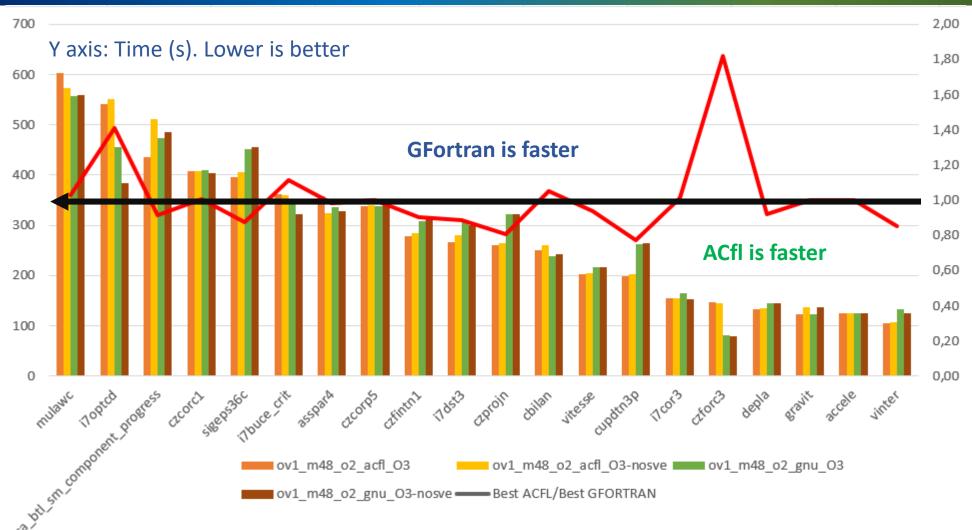
- no-sve option produces a scalar version taking ~25s
- Without excluding option, SVE version is taking ~90s

Multiple factors: scalar version can use dedicated instructions/registers when comparing/setting with zero whereas SVE instruction set lack such feature and requires to have every store instruction under predication


17bucecrit function

One of the loop is vectorized in NEON ONLY if SVE is disabled Bug/Cost model?

Compiler flags impact: ACfl on AWS G4



O3 no-sve is the compiler option with the largest impact (positive or negative!)

Best ACfl/best GFortran on AWS G4

Red Curve is Best ACfl time / Best GFortran time: greater than 1 means ACfl is slower, lower than 1 means GFortran is slower

Compiler Analysis of OpenRadiOss

- 1) Fine tuning compiler options: up to 5% performance gain
- 2) Fine tuning across compiler and compiler options: up to 10% performance gain

Future work

- > Analyze more compiler options: fastmath, funroll, etc....
- Automate backport from one compiler to the other: pragma insertion: if a compiler has been able to vectorize a loop, the information could be provided through pragmas to compilers which were unsuccessful in vectorizing the same loop.
- > Interact with compiler developers to refine/improve cost models
- > Interact with application developers to use this technology

CONCLUSIONS

Conclusions

- Non uniform behavior of compiler options across subroutines/loops: some options perform better with some subroutines
- Non uniform behavior between compilers across subroutines/loops: no silver bullet compiler....
- Non uniform means non negligible performance difference: these performance difference are worth exploring/exploiting

Above all of these are well known "generic facts"

Conclusions

- Non uniform behavior of compiler options across subroutines/loops: some options perform better with some subroutines
- Non uniform behavior between compilers across subroutines/loops: no silver bullet compiler....
- Non uniform means non negligible performance difference: these performance difference are worth exploring/exploiting

Above all of these are well known "generic facts" but MAQAO/QaaS allows to bring in:

- Quantitative estimation : essential for driving optimization
- Explanation of performance differences: this opens the door to backport optimization between compilers

Performance Optimisation and Productivity 3

A Centre of Excellence in HPC

Contact:

https://www.pop-coe.eu

pop@bsc.es

POP_HPC

youtube.com/POPHPC

Backup Results

A FEW SPECIFIC MAQAO METRICS (1)

First, most of our dynamic measurements are based on sampling.

We distinguish and measure for every thread two types of wasted time

- Inactive time (obtained by comparing wall clock with active time = sum of collected samples)
- Time spent in OpenMP, MPI, Pthreads activity

With these measurements we generate 4 essential metrics:

- Average active time: Sum over all threads of their active time divided by thread count.
 IDEAL = total execution time
- Activity ratio: Sum over all threads of their active time divided by the sum of their wall time. IDEAL: 100%
- 3. Average active number of threads: Sum over all threads of their active time divided by longest wall clock time: IDEAL = number of threads used
- 4. Affinity stability: evaluates percentage of time spent without thread migration between physical cores: IDEAL 100%

A FEW SPECIFIC MAQAO METRICS (2)

For each thread, we gather a full picture of their activity: time spent in various functions including time spent in various libraries: OpenMP, MPI and Pthreads.

From these measurements we extrapolate impact of time spent in OpenMP/MPI/Pthread libraries and load distribution.

Perfect OpenMP + MPI + Pthread: max (Original Thread time)/ max (Stripped Thread Time): Stripped ⇔ time spent in OpenMP/MPI/Pthread set to 0.

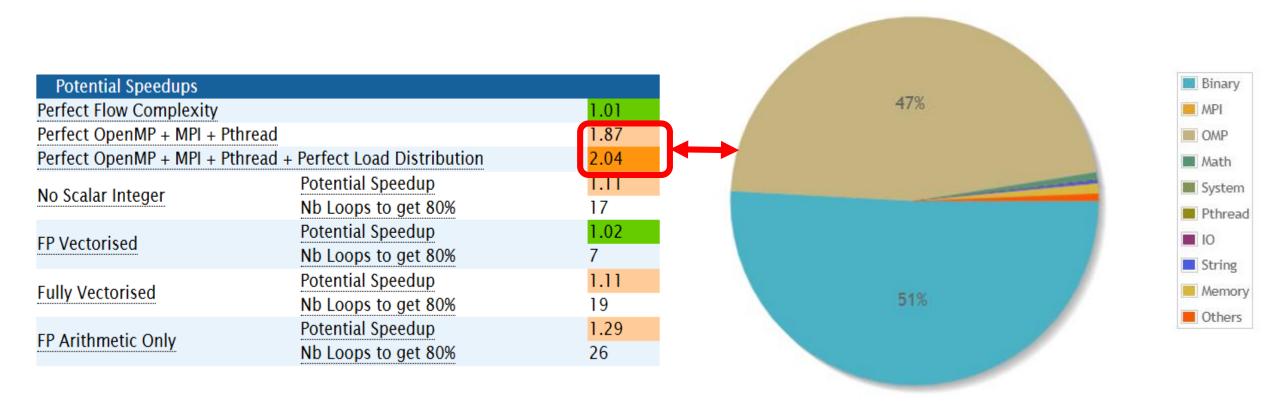
Perfect OpenMP + MPI + Pthread + Perfect Load Distribution: max (Original Thread time)/ average (Stripped Thread Time):

A performance optimization goal is to have these 2 metrics under 1.1.

OpenMP Results

Backup Slides

G4 NEONM11 runs: 1 MPI Rank, 96 OpenMP threads, ACFL -O3 (1/3)



Global Metrics	?	Large gap indicates a large	
Total Time (s)	3.90 E3	amount of thread inactive time amount of thread inactive time	
Max (Thread Active Time) (s)	2.82 E3	amount of thread mactive time	
Average Active Time (s)	2.59 E3		
Activity Ratio (%)	66.4	Low numbers: poor resource usage	
Average number of active threads	rage number of active threads 63.729		
Affinity Stability (%)	100.0		
Time in analyzed loops (%)	48.0		
Time in analyzed innermost loops (%)	40.6		
Time in user code (%)	50.9		
Compilation Options Score (%)	100		
Array Access Efficiency (%)	73.6		

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-aws_o96_m1_acfl-o3/index.html

G4 NEONM11 runs: 1 MPI Rank, 96 OpenMP threads, ACFL -O3 (2/3)

G4 NEONM11 runs: 1 MPI Rank, 96 OpenMP threads, ACFL - O3 (3/3)

Name	Module	Coverage mpi 1_rank_omp_96_threads (%	Nb Threads 6) mpi_1_rank_omp_96_threads
aarch64_cas4_acq_rel	libomp.so	14.96	96
 intkmp_dispatch_next_algorithm<int>(int, dispatch_priv ate_info_template<int>*, dispatch_shared_info_template<int> volatile*, int*, int*, int*, traits_t<int>::signed_t*, int, int)</int></int></int></int> 	libomp.so	14.21	96
kmp_wait_4	libomp.so	7.74	96
 aarch64_ldadd4_acq_rel 	libomp.so	7.28	96
► asspar4	engine_iinuxao 4_ompi	6.63	96
► mulawc	engine_linuxa6 4_ompi	6.56	96
► i7buce_crit	engine_linuxa6 4_ompi	5.12	96
► m2cplr	engine_linuxa6 4_ompi	3.95	96
► cupdt3p	engine_linuxa6 4 ompi	3.26	96

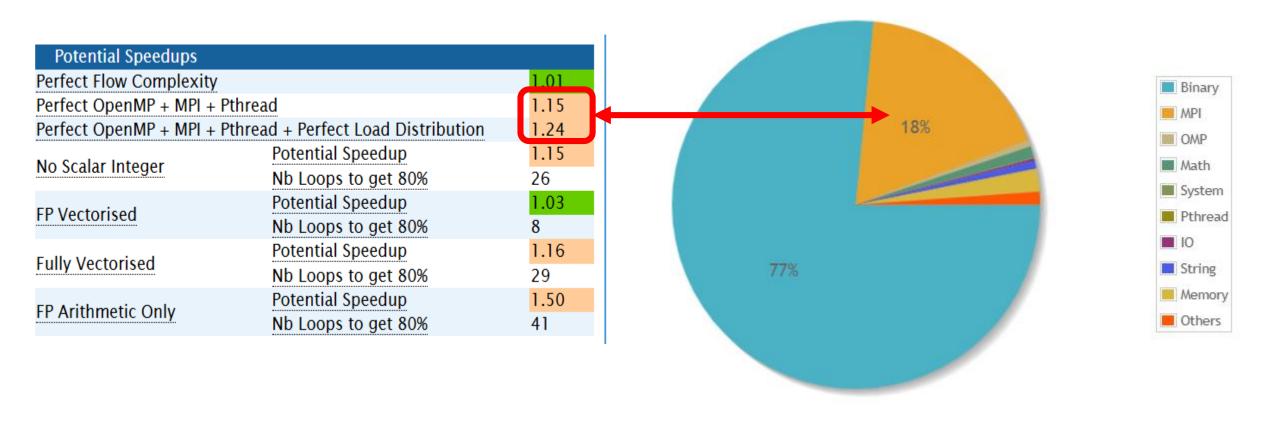
MAIN ISSUES

- critical section (OMP CRITICAL) in i7buce_crit
- locks (OMP_SET_LOCK) mostly from i7optcd (lockon.inc:28)

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-aws_o96_m1_acfl-o3/fcts_and_loops.html

MPI Results

G4 NEONM11 runs: 96 MPI Ranks, 1 OpenMP threads, ACFL – O3 (1/3)


Global Metrics		
Total Time (s)	1.71 E3 Small gap indicates a	sma
Max (Thread Active Time) (s)	1.63 E3 amount of thread inac	
Average Active Time (s)	1.61.F3	
Activity Ratio (%)	93.7 High numbers: good re	esou
Average number of active threads	90.878 usage	
Affinity Stability (%)	98.9	
Time in analyzed loops (%)	71.3	
Time in analyzed innermost loops (%)	63.7	
Time in user code (%)	76.5	
Compilation Options Score (%)	100	
Array Access Efficiency (%)	73.4	

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4aws_o1_m96_acfl-o3/

G4 NEONM11 runs: 96 MPI Ranks, 1 OpenMP threads, ACFL – O3 (2/3)

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-aws_o1_m96_acfl-o3/

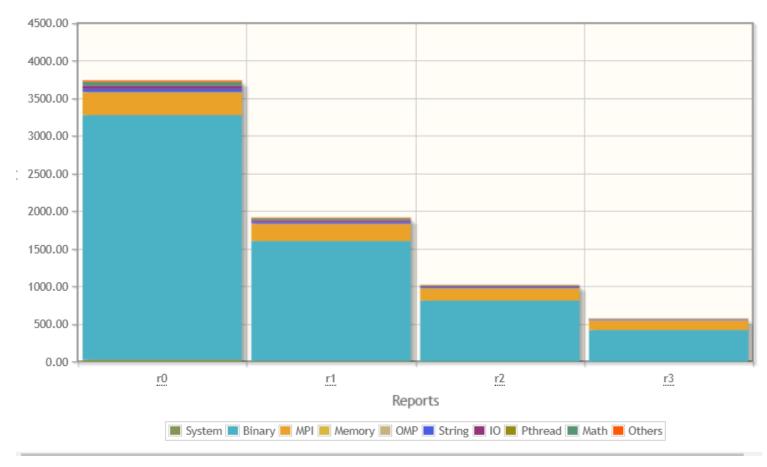
G4 NEONM11 runs: 96 MPI Ranks, 1 OpenMP threads, ACFL – O3 (3/3)

Name	Module	Coverage mpi_96_ranks_omp_1_thread (%)	Nb Threads mpi_96_ranks_omp_1_thread
 mca_btl_sm_component_progress 	libopen-pal. so.80.0.5	13.09	96
► mulawc	engine_linu xa64_ompi	10.79	96
► asspar4	engine_linu xa64_ompi	7.57	96
► m2cplr	engine_linu xa64_ompi	6.62	96
► cupdt3p	engine_linu xa64_ompi	5.41	96
► chvis3	engine_linu xa64_ompi	4.65	96

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-aws_o1_m96_acflo3/fcts_and_loops.html

AMPERE SKYCAB runs: 80/160/3220/640 MPI Ranks, 1 OpenMP threads, ACFL – O3 (1/2)

Global Metrics									
Metric	r0	r1	r2	r3					
Total Time (s)	3.76 E3	1.93 E3	1.04 E3	585.62					
Max (Thread Active Time) (s)	3.74 E3	1.92 E3	1.02 E3	575.77					
Average Active Time (s)	3./3 E3	1.91 E3	1.02 E3	569.99					
Activity Ratio (%)	99.3	99.0	98.0	97.3					
Average number of active threads	79.451	158.408	313.725	622.917					
Affinity Stability (%)	0.89	0.97	1.39	1.14					
Time in analyzed loops (%)	82.4	78.6	74.5	68.7					
Time in analyzed innermost loops (%)	79.4	75.6	71.4	65.1					
Time in user code (%)	86.9	83.0	78.8	72.9					
Compilation Options Score (%)	0	0	0	0					
Array Access Efficiency (%)	69.9	70.6	68.4	71.1					


r0: 1 node (80 cores), r1: 2 nodes (160 cores), r2 (320 cores), r3 (640 cores)

https://datafront.exascale-computing.eu/public/OpenRadioss/compare/OpenRadioss_SkyCAB_turpan_o3_o1_m80-640_acfl_compare/

AMPERE Skycab runs: 80/160/320/640MPI Ranks, 1 OpenMP threads, ACFL - O3 (2/2)

r0:1 node (80 cores),

r1: 2 nodes (160 cores),

r2:4 nodes (320 cores),

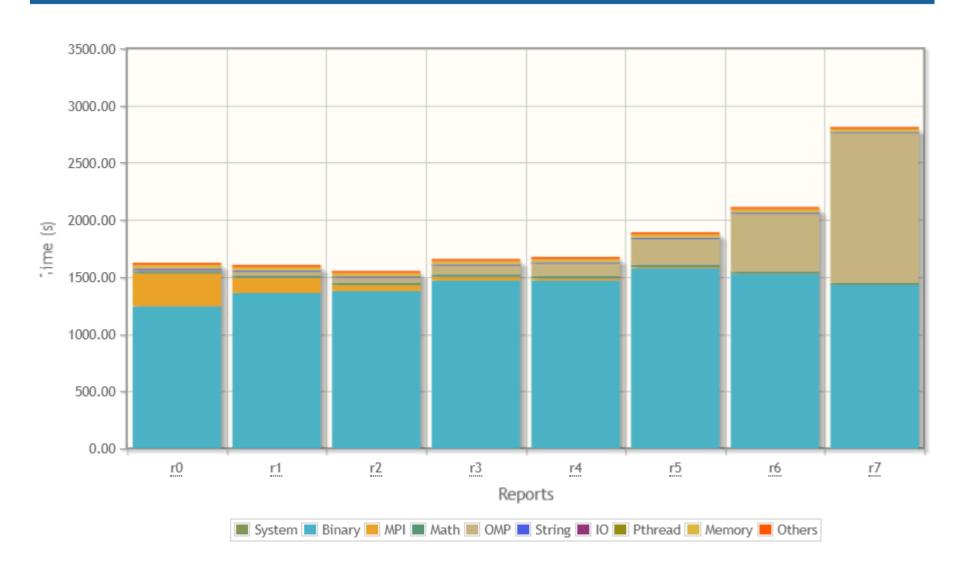
r3:8 nodes (640 cores)

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-aws_o1_m96_acfl-o3/fcts_and_loops.html

G4 NEONM11 runs: hybrid, ACFL – O3 (1/2)

Global Metrics									
Metric	r0	<u>r1</u>	r2	r3	r4	r5	r6	<u>r7</u>	
Total Time (s)	1.71 E3	1.75 E3	1.78 E3	2.01 E3	2.07 E3	2.48 E3	2.86 E3	3.90 E3	
Max (Thread Active Time) (s)	1.63 E3	1.61 E3	1.55 E3	1.66 E3	1.68 E3	1.89 E3	2.12 E3	2.82 E3	
Average Active Time (s)	1.61 E3	1.45 E3	1.37 E3	1.37 E3	1.40 E3	1.50 E3	1.73 E3	2.59 E3	
Activity Ratio (%)	93.7	82.6	77.5	68.2	67.6	60.5	60.7	66.4	
Average number of active threads	90.878	79.247	74.324	65.388	64.901	58.014	58.206	63.729	
Affinity Stability (%)	98.9	99.9	100.0	100.0	100.0	100.0	100.0	100.0	
Time in analyzed loops (%)	71.3	79.1	83.1	83.3	82.5	78.5	68.0	48.0	
Time in analyzed innermost loops (%)	63.7	70.4	73.5	71.9	71.0	66.6	57.9	40.6	
Time in user code (%)	76.5	84.7	88.7	88.6	87.7	83.3	72.2	50.9	
Compilation Options Score (%)	100	100	100	100	100	100	100	100	
Array Access Efficiency (%)	73.4	74.2	74.3	75.1	74.9	75.1	74.9	73.6	

- r0: ov1_n1m_m96-o1_o3_acfl
- rl: ov1_n1m_m48-o2_o3_acfl
- r2: ov1_n1m_m24-o4_o3_acfl
- r3: ov1_n1m_m12-o8_o3_acfl
- r4: ov1_n1m_m8-o12_o3_acfl
- r5: ov1_n1m_m4-o24_o3_acfl
- r6: ov1_n1m_m2-o48_o3_acfl
- r7: ov1_n1m_m1-o96_o3_acfl


https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/OpenRadioss_NEON1M11-full_G4-aws_cr_o1-96_m96-1_acfl-o3/

G4 NEONM11 runs: hybrid, ACFL – O3 (2/2)

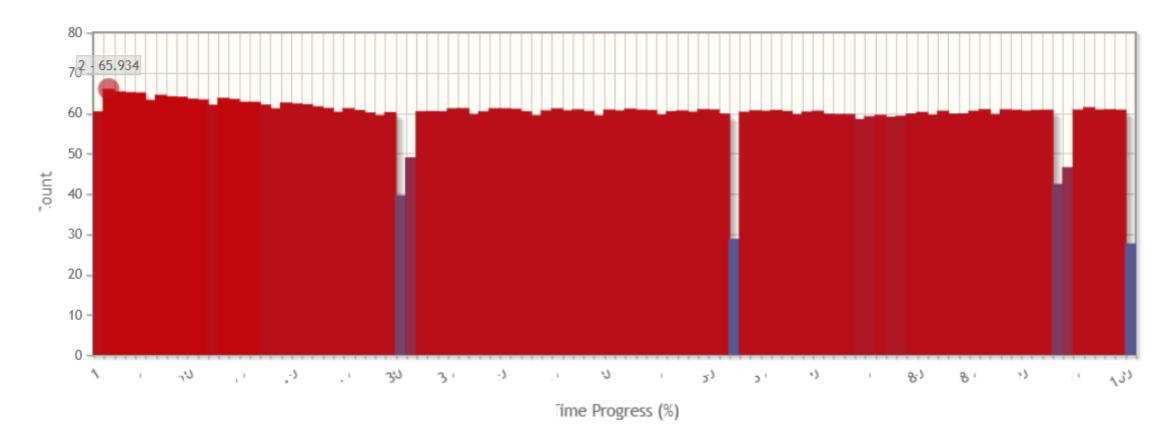
Time

- r0: ov1_n1m_m96-o1_o3_acfl
- r1: ov1_n1m_m48-o2_o3_acfl
- r2: ov1_n1m_m24-o4_o3_acfl
- r3: ov1_n1m_m12-o8_o3_acfl
- r4: ov1_n1m_m8-o12_o3_acfl
- r5: ov1_n1m_m4-o24_o3_acfl
- r6: ov1_n1m_m2-o48_o3_acfl
- r7: ov1_n1m_m1-o96_o3_acfl

G4 NEONM11 runs: hybrid, 8 MPI ranks, 12 OMP threads ACFL – O3 (1/2)

Global Metrics	•
Total Time (s)	2.08 E3
Max (Thread Active Time) (s)	1.67 E3
Average Active Time (s)	1.40 E3
Activity Ratio (%)	67.2
Average number of active threads	64.434
Affinity Stability (%)	100.0
Time in analyzed loops (%)	82.5
Time in analyzed innermost loops (%)	70.9
Time in user code (%)	87.7
Compilation Options Score (%)	100
Array Access Efficiency (%)	75.2

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/EO_OpenRadioss_NEON1M11-full_G4-aws_o12_m8_acfl-o3/index.html



G4 NEONM11 runs: hybrid, 8 MPI ranks, 12 OMP threads ACFL – O3 (2/2)

Average Active Threads Count

https://datafront.exascale-computing.eu/public/OpenRadioss/NEON1M11/G4_AWS/acfl/EO_OpenRadioss_NEON1M11-full_G4-aws_o12_m8_acfl-o3/index.html

G4 TAURUS runs: hybrid, ACFL – O3 (1/2)

Global Metrics				•
Metric	r0	r1	r2	r3
Total Time (s)	7.96 E3	7.96 E3	8.27 E3	8.84 E3
Max (Thread Active Time) (s)	7.93 E3	7.91 E3	8.22 E3	8.73 E3
Average Active Time (s)	7.83 E3	7.79 E3	8.04 E3	8.44 E3
Activity Ratio (%)	98.5	98.0	97.2	95.6
Average number of active threads	95.506	93.990	93.282	91.635
Affinity Stability (%)	0.42	0.12	0.07	0.06
Time in analyzed loops (%)	76.3	77.6	75.9	72.5
Time in analyzed innermost loops (%)	69.6	71.1	69.7	66.4
Time in user code (%)	79.2	80.4	78.6	75.0
Compilation Options Score (%)	99.5	99.5	99.5	99.5
Array Access Efficiency (%)	65.3	65.2	65.0	64.8

- r0: mpi_96_omp_1_thread
- r1: mpi_48_omp_2_threads
- r2: mpi_24_omp_4_threads
- r3: mpi_12_omp_8_threads

https://datafront.exascale-computing.eu/public/OpenRadioss/TAURUS10M/G4_AWS/acfl/OpenRadioss_TAURUS10M-short_g4-aws_o1-8_m12-96_acfl_engine/

G4 TAURUS runs: hybrid, ACFL – O3 (2/2)

- r0: mpi_96_omp_1_thread
- r1: mpi_48_omp_2_threads
- r2: mpi_24_omp_4_threads
- r3: mpi_12_omp_8_threads

GLOBAL CHARACTERISTICS TAURUS ACFL -O3 ON G4 (2)

Loop id	Source Location	Source Function	Level	Exclusive Coverage mpi_48_ranks_omp_2_threads (%)	Vectorization Ratio (%)	Vector Length Use (%)
12/36	proj.F:1205-1462 []	czprojn	Single	4.32	4.82	52.33
6583	engine_linuxa64_gf_ompi - ass par4.F:172-172	asspar4	Innermost	3.88	100	100
11257	engine_linuxa64_gf_ompi - cu pdtn3.F:637-690 []	cupdtn3p	Innermost	3.50	40.68	70.34
	engine_linuxa64_gf_ompi - i7o ptcd.F:200-233 []		Innermost	2.64	0	45.54
30830	engine_linuxa64_gf_ompi - i7b uce_crit.F:133-147	i7buce_crit	Innermost	2.01	6.25	52.6
6602	pia.F:95-103	depla	Innermost	1.96	50	75
	VIT.F:157-159	-	Innermost	1.91	0	46.83
6883	engine_linuxa64_gf_ompi - vit esse.F:80-85	vitesse	Innermost	1.63	41.67	75
23947	engine_linuxa64_gf_ompi - i7c or3.F:127-176	i7cor3	Innermost	1.61	12.04	52.19
	engine_linuxa64_gf_ompi - czf intn.F:355-445		Innermost	1.54	100	100
30835	engine_linuxa64_gf_ompi - i7b uce_crit.F:155-169	i7buce_crit	Innermost	1.44	6.52	39.67
30856	engine_linuxa64_gf_ompi - i7o ptcd.F:200-238	i7optcd	InBetween	1.37	0	48.03
	engine_linuxa64_gf_ompi - cbi lan.F:111-152	cbilan	Single	1.33	18.03	59.02
6887	engine_linuxa64_gf_ompi - vit	vitassa	Innermost	1 29	41.67	75

https://datafront.exascale-computing.eu/public/OpenRadioss/TAURUS10M/G4_AWS/gnu/OpenRadioss_TAURUS10M-short_g4-aws_o2_m48_gnu_engine/

LAMMPS on Graviton 3 (64 cores) AWS: Armclang versus GCC

		mcpu=neoverse- v1 -armpl -ffast-	ARMCLANG 2 - 03 - mcpu=neoverse- v1 -armpl -msve- vector-bits=256 - ffast-math	v1 +nosve+nosve2 - armpl -ffast-	v1 -armpl -fno-	mcpu=neover se-v1 -armpl -	GCC1 -O3 - mcpu=neovers e-v1 -larmpl - funroll-loops - ffast-math		se-v1 -larmpl - msve-vector- bits=128 -	se- v1+nosve+no sve2 -larmpl -	se-v1 -larmpl -	se-v1 -larmpl - funroll-loops - ffast-math
Me	etric	ARMCLANG 1	ARMCLANG 2	ARMCLANG 4	ARMCLANG 5	ARMCLANG 6	GCC 1	GCC 2	GCC 3	GCC 4	GCC 5	GCC 6
Total 1	Time (s)	420,57	422,54	423,42	430,12	421,46	434,58	433,02	433,38	434,74	432,86	440,65
В	est	1,00	1,00	1,01	1,02	1,00	1,03	1,03	1,03	1,03	1,03	1,05
Max (Thread A	Active Time) (s)	418,66	420,65	421,57	428,29	419,53	432,68	431,32	431,52	432,7	431,22	438,59
Average Ac	tive Time (s)	418,43	420,29	421,23	427,84	419,19	432,35	430,79	431,13	432,43	430,67	438,33
Activity	Ratio (%)	99,5	99,5	99,5	99,5	99,5	99,5	99,5	99,5	99,5	99,5	99,5
Average number	r of active threads	63,67	63,66	63,67	63,66	63,66	63,67	63,67	63,67	63,66	63,68	63,66
Affinity S	tability (%)	99,9	100	99,9	100	99,9	99,9	100	100	99,9	100	99,9
Time in analy	yzed loops (%)	97,8	97,9	97,7	97,7	97,9	97,7	97,9	97,8	97,8	97,7	97,8
ime in analyzed i	nnermost loops (%	65,7	65,6	65,3	94,5	65,8	84,2	84,6	84,6	84,5	84,4	85,3
Time in us	er code (%)	98,1	98,2	97,9	98,1	98,2	98	98,1	98	98	98	98
Compilation Options Score (%)		100	100	100	100	87,5	100	100	100	100	100	87,5
Array Access	Efficiency (%)	62,5	62,6	63	44,5	61,5	44,3	44,3	44,3	44,3	44,3	44,5

BEST: TIMING RATIOS: current timing over best timing across all compilers and compiler options.

- Green cells corresponds to best or very close to best (< 1%)
- Yellow cells correspond to performance losses < 3%
- Red cells correspond to performance losses > 3%

Hardware/Software platforms

Model Name	Frequency (GHz)	Number of cores/socket		L1D (KB)	L1I (KB)	L2 (KB)	L3 (MB)	L3/Core (MB)
Neoverse N1 Ampere ALTRA Q80-30 (CALMIP)	3	80	1	64	64	1024	32	0,40
Neoverse V1 G3E (AWS)	2,6	64	1	64	64	1024	32	0,50
Neoverse V2 G4 (AWS)	2,8	96	1	64	64	2048	36	0,38

Neoverse N1: Arm C/C++/Fortran Compiler version 22.1 (build number 12) (based on LLVM 13.0.1)

Neoverse V1/V2: ACfL 24.10, GNU Fortran2008 13.2.0

Compiler options: O2, O3, O3 + no-sve, O3 + no-sve2

TALK FOCUS: AWS Graviton 4 Results

