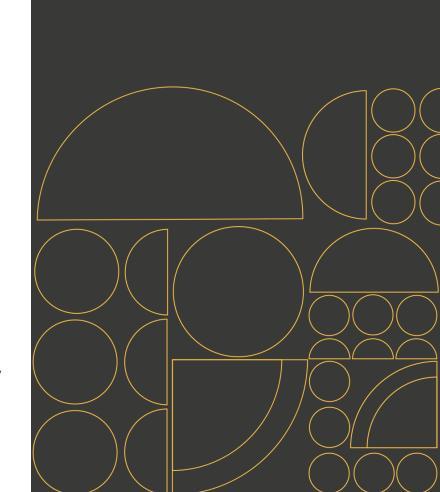
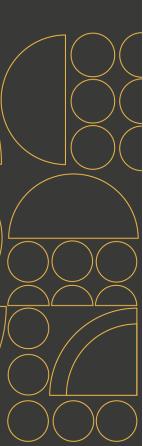


ChEESE and POP: a Story of Success and Fruitful Interaction

30th POP Webinar


11th November 2024

Arnau Folch (CSIC, Spain) Piero Lanucara (CINECA, Italy)


Many thanks to Vadim Montellier (CNRS), Jose Gracia (HLRS), Brian Wylie (JSC), Marta García (BSC) and the rest of people form ChEESE WP2

Outline

O1 ChEESE-2P overview

O2 The ChEESE-2P WP2 strategy

O3 SPECFEM3D showcase

ChEESE: The CoE in geophysics (and geohazards)

	Earthquakes	Volcanoes	Tsunamis	MHD	Geodynamics	Glaciers
ChEESE-1P (2019-2022)						
ChEESE-2P (2023-2026)					- 75 - T	MAA.

ChEESE in a nutshell

ChEESE covers 3 approaches to exascale

Capability computing

Solve problems that traditionally have been parameterised because are unaffordable with current hardware

Capacity computing

Solve ensembles of single problems affordable with petascale-range machines but that can aggregate into an exascale workflow (e.g. data inversion, model data assimilation, uncertainty quantification, etc)

Urgent computing

Solve capability/capacity problems under strict time constrains in terms of time-to-solution (emergency situations)

Cheese in a nutshell

Cheese sustains on 3 pillars

Flagship codes

Open source community codes on seismology, tsunamis, volcanoes, geodynamics, magnetohydrodynamics, and glaciers

Pilot Demonstrators

Workflows that address underpinning capability/capacity/ UC exascale computational challenges

Simulation Cases and services

Enabling of services on sociallyrelevant aspects of geohazards like urgent computing for disaster response, early warning and hazard assessment

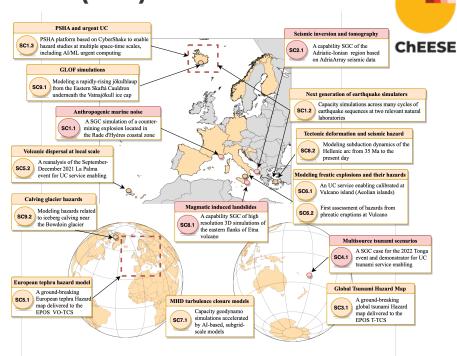
ChEESE Pillar 1: the 11 flagship codes

Domain	No	Code	Accelerated	Mini-app	Licence	PDs
	1	SeisSol	CUDA, SYCL	yes	BDS3	PD1,PD4
Computational	2	SPECFEM3D	CUDA, HIP	yes	GNU GPL v3	PD1,PD2
Seismology	3	ЕхаНуРЕ	on-going	no	Modified BSD3	PD1,PD4
	4	Tandem	on-going	yes	BSD3-clause new	PD1
MHD	5	xSHELLS	CUDA	yes	CeCILL	PD7
Tsunami modelling	6	HySEA	CUDA	yes	Core under CCA	PD3,PD4
Volcanology	7	FALL3D	OpenACC	yes	GNU GPL v3	PD5
voicariology	8	OpenPDAC	on-going	no	GNU GPL v3	PD6
Geodynamics	9	LaMEM	on-going	no GNU GPL v3		PD8
Geodynamics	10	pTatin3D	CUDA	yes	GNU GPL v3	PD8
Glacier modelling	11	Elmer/ICE	on-going	no	GNU GPL v2-v3	PD9

ChEESE Pillar 1: the 11 flagship codes (wide range of typologies)

Code	Wave propagation	CFD (multiphysics)	CFD (geodynamics)	Shallow waters	Transport
SeisSol	✓				
SPECFEM3D	✓				
ЕхаНуРЕ	✓				
Tandem			✓		
xSHELLS		✓			
HySEA				✓	
FALL3D					✓
OpenPDAC		✓			
LaMEM			✓		
nTatin 2D					

ChEESE Pillar 1: the 11 flagship codes



WP	WP Title
1	Project Management
2	Exascale technical challenges in flagship codes
3	Co-design with European HPC vendors and technologies
4	Simulation ecosystem
5	Farming Pilot Demonstrators

		0.11101
WP		Code preparation activities
5	Model physics	New code physics, couplings and forcing terms (T5.1)
		Code audit(s) and related POP metrics (T2.1)
	· ·	GPU porting and fine tuning (T2.2)
	Code	Single heterogeneous node performance (T2.3)
2	performance (audit driven)	Multi-node performance (T2.3)
		Algorithmic improvements (T2.3)
		Resilience and fault tolerance (T2.3)
		IO performance (T2.3)
3	co-desing	Co-design with mini-apps (T3.1, T3.2 and T3.3)

ChEESE Pillar 2: the 9 Pilot Demonstrators (PDs)

No	PD name	Area	Initial TRL	Target TRL
1	Extreme-scale modeling of seismic hazards	CS	5	7
2	Joint seismic inversion and tomography		4	6
3	Global tsunami hazard and uncertainty quantification	Т	6	8-9
4	Complex multi-source tsunami modeling	,	3	5
5	Ensemble-based volcanic dispersal at multiple scales	V	5	7-8
6	Multiphase 3D volcanic explosion modeling	V	4	7
7	The Earth's dynamo model	MHD	3	5
8	Geodynamics to geohazards	GD	3	5
9	Glacial outburst floods	GL	2	4

PDs will materialize in **15 Simulation Cases** (SCs) to produce:

- Open datasets
- Urgent computing service enabling
- TCS-TSU and TCS-VO in EPOS

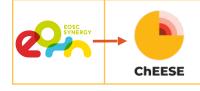
15 Simulation cases (4 Scientific Grand Challenges)

PD	No	SC name		SGC	Expected outcome
	SC1.1	1.1 Anthropogenic noise and seismicity, wave propagation at higher frequencies in Rade d'Hyères		yes	open datasets
PD1	SC1.2	Next generation of earthquake simulators for the Hellenic arc and Iceland	capacity	-	earthquake catalogs
	SC1.3	Physics-based PSHA and urgent UQ for Iceland	capacity	-	UC service enabling
PD2	SC2.1	Seismic tomography of the Adriatic-Ionian region	capability	yes	open datasets
PD3	SC3.1	The Global Tsunami Hazard Map	capacity	-	TCS-TSU service in EPOS
PD4	SC4.1	Multi-source local high-resolution scenario with emphasis on the 2022 Tonga case		yes	UC service enabling
PD5	SC5.1	Towards the European tephra hazard map	capacity	-	TCS-VO service in EPOS
PDS	SC5.2	Volcanic dispersal at local scale: a reanalysis of the 2021 La Palma case	capacity	-	UC service enabling
PDC.	SC6.1	Urgent high-resolution, 3D multiphase flow simulation of phreatic eruptions at Vulcano	capability	-	UC service enabling
PD6	SC6.2	Long-term probabilistic hazard maps for phreatic eruptions at Vulcano island	capacity	-	open datasets
PD7	SC7.1	MHD turbulence closure models in planetary cores using AI	capacity	-	open datasets
	SC8.1	Magmatic systems and induced landslides: the Etna case	capability	yes	open datasets
PD8	SC8.2	3D evolution of tectonic deformation as driver of seismic hazard in the Hellenic arc	capability	-	open datasets
PD9	SC9.1	Eastern Skaftá cauldron GLOF simulation, Iceland	capacity	-	open datasets
PDS	SC9.2	Calving glacier hazard in Greenland	capacity	-	open datasets

ChEESE Pillar 3: enabling of 3 typologies of services

Urgent Computing (UC) service enabling at EuroHPC systems (emergency access mode)

Collaboration with IUB members (trials) and EuroHPC Infrastructure Advisory Group (INFRAG) for UC service certification, deployment, and access


PD1	SC1.3	Physics-based PSHA and urgent UQ
PD4	SC4.1	Multi-source high-resolution tsunamigenic scenarios
PD5	SC5.2	Volcanic dispersal at multiple scales
PD6	SC6.1	Multiphase flow simulation of phreatic eruptions

2 Services integrated in EPOS
Tematic Core Services (TCS)
TCS-TSU and TCS-VO

PD3	SC3.1	Global Tsunami Hazard Map
PD5	SC5.1	The European tephra hazard map

CI/CD in EuroHPC systems

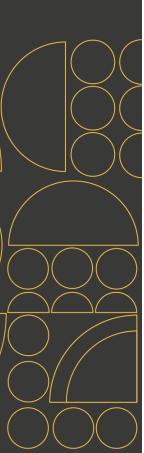
Collaboration with CASTIEL2

 Software Quality Assurance as a Service (SQAaaS)

ChEESE and POP

	ChEESE-1P and POP2	ChEESE-2P and POP3
Audit campaigns	• 2 campaigns (10 codes)	• 2 campaigns (11 codes)
Audit purpose	Identify code bottlenecks	 Identify code bottlenecks Code performance baseline Code performance monitoring based on POP metrics (including TALP)
Audit tools	Score-p (level 1 codes)Extrae (level 2 and codes)	Several (systems dependent)
Audit focus	 CPU (POP hybrid metrics were still under development at that time) 	CPU and GPU
Other		 Second Level Services (SLS) for "Correctness-check", "Energy-efficiency study", and "Advisory study".

Cheese-2P and POP


• 10 codes have been analysed for baseline scaling behaviour and POP metrics for the Focus of Analysis (FoA)

Code	Programing model	Version	System	Audit tool
SeisSol	MPI + SYCL + CUDA	1.1.3	Leo-B	Extrae; SeisSol self-profiling
SPECFEM3D	MPI + CUDA	devel 4.0.0	Leo-B	Scalasca/2.6.1; Score-P/8.3
ExaHyPE	MPI + OpenMP target		Leo-B	Score-P/8.3
Tandem	MPI	1.1.0	LUMI-C	Score-P/8.3
xSHELLS	MPI + CUDA		Vega-G	
HySEA	MPI + CUDA	4.3.0	Leo-B	Extrae
FALL3D	MPI + OpenACC	8.2.1	Leo-B	Extrae and mpiP
OpenPDAC	MPI	1.0.0	LUMI-C	DLB/TALP and mpiP
LaMEM	MPI		LUMI-C	Extrae
pTatin3D	MPI + HIP		LUMI-G	Extrae
ELMER/ICE	MPI	fdd6c58f1	LUMI-C	Extrae

Issues encountered:

- Heterogeneity of the performance analysis tools across EuroHPC systems
- Need for dedicated project access resources (no audit access mode)

Outline

O1 ChEESE-2P overview

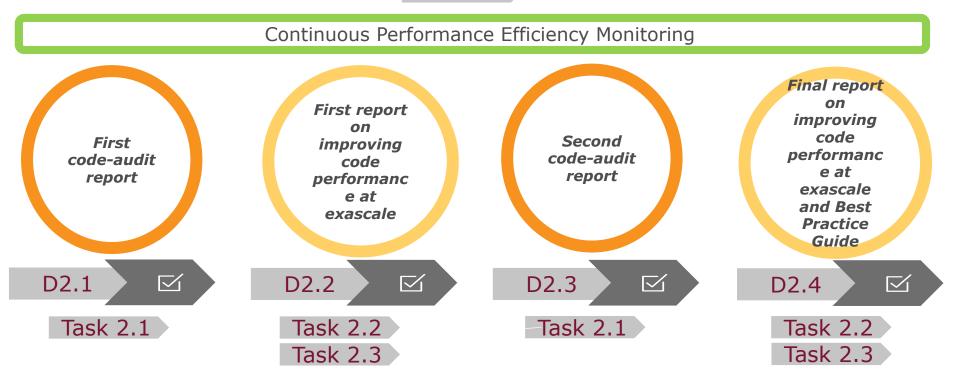
The ChEESE-2P WP2 strategy

O3 SPECFEM3D showcase

Bridging the gap between ChEESE-2P Flagship codes and the European HPC ecosystem

Area	No	Code	Lead	ChEESE -1P
	1	SeisSol	LMU/TUM	yes
CS	2	SPECFEM3D	CNRS	yes
CS	3	ExaHyPE	TUM	yes
	4	Tandem	LMU	no
MHD	5	xSHELLS	CNRS	yes
Т	6	HySEA	UMA	yes
V	7	FALL3D	CSIC	yes
V	8	OpenPDAC	INGV	no
9		LaMEM	UM	no
GD	10	pTatin3D	SU	no
GL	11	Elmer/ICE	CSC	no

Tier-0 (pre-exascale)			TOP500
LUMI	Finland	~500 PFlop/s peak	5
Leonardo	Italy	~300 PFlop/s peak	6
MN5 ACC	Spain	~250 PFlop/s peak	8


More than 1000 PFlop/s peak aggregated computing power...

...but with a variety of different (accelerated) architectures

WP2 methodology

Task 2.4

T2.1 Code audits (including D2.1 statistics)

- ☐ Goal: set performance baseline for optimization work and progress monitoring. Identify performance bottlenecks.
- Method: two performance audit campaigns (M3-M15, M27-M36)
- □ Actual performance analysis done in collaboration with POP3
- ☐ Target EuroHPC systems such as Leonardo, LUMI, ...

POP metrics*	final	preliminary
# POP	7 observations	4 recommendati
discussion	only	ons
#	2	4

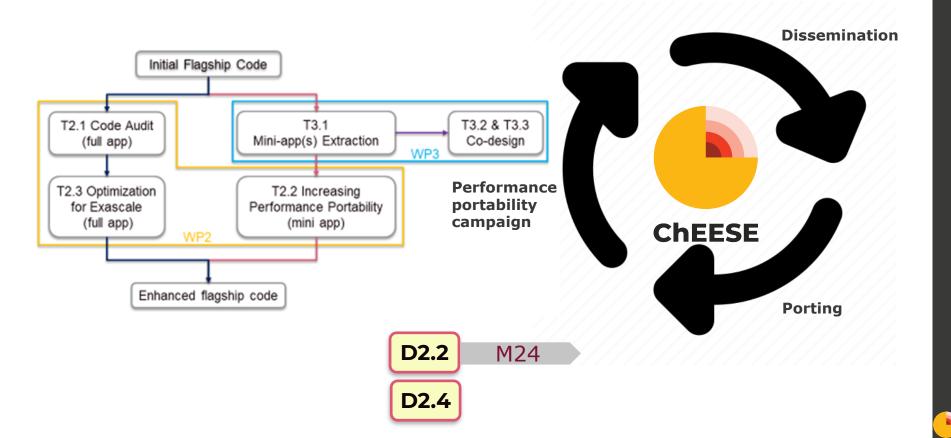
The same scientific use cases to be used for both assessments

System	Leo-G	LUMI-C	LUMI-G
#	5	4	1

Scaling*	weak	strong
#	3	8

max MPI ranks	512	1024	8192	
#	2	1	1	
max GPUs*	16	32	64	256

- Access to EuroHPC systems challenging and complicated
- ☐ Availability of performance analysis tools on EuroHPC systems


T2.1 Code audits (including some D2.1 Highlights)

- Useful to have a clear idea on what is exactly the bottleneck in the performance and where is located
- ☐ Useful to have a quantitative measure of the performance obtained in a scaling campaign and the particular metric(s) responsible for the loss of performance

T2.2 Increasing the performance portability of flagship codes for different accelerators: the methodology

T2.2 Increasing the performance portability of flagship codes for different accelerators: dissemination

- Online events on performance portability tools and techniques:
- 1. 13/06/23 webinar: Porting to GPU a Fortran code using intrinsic parallelism
- 2. 28/06/23 webinar: OpenCL GPU Programming for HPC Applications
- 3. 07/07/23 webinar: Kokkos
- 4. 21/12/23 webinar: Device accelerated solvers with PETSc

- Other webinars will be planned (date to be fixed). So far:
- 1. GPU Performance portability for directive-based approach
- MPI GPU-aware communications: some figures and examples from Leonardo
- 3. SYCL programming
- 1. .

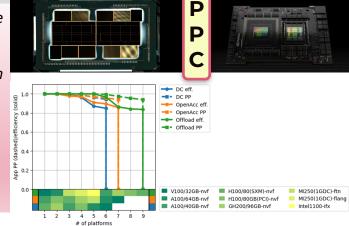
T2.2 Increasing the performance portability of flagship codes for different accelerators: porting

- ☐ Goal: use different strategies for increasing the performance portability in flagship codes (or available mini-apps):
- 1. Directive based tools (OpenMP offload/OpenACC)
- 2. Intrinsic language parallelism (stdpar for C/C++, DO CONCURRENT Fortran, ...)
- 3. Performance Portable programming model (Kokkos, Raja, SYCL, ...)
- 4. Performance Portable Libraries (PETSc, ...)

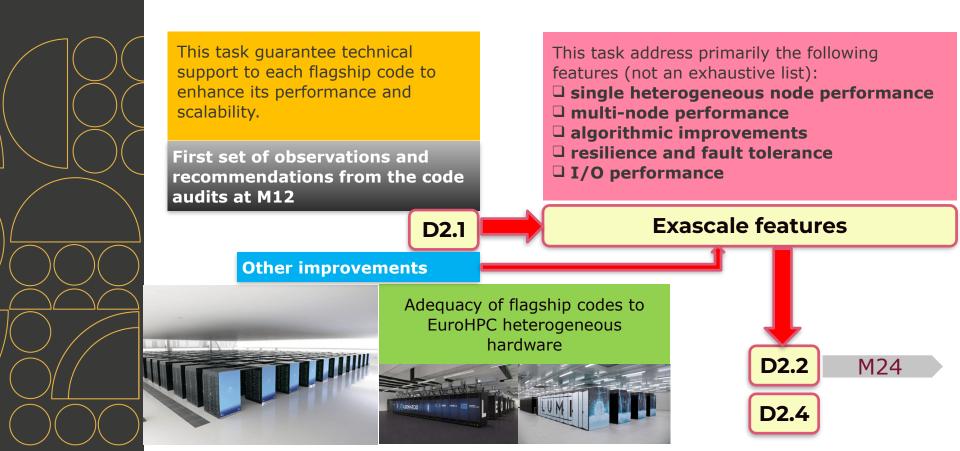
☐ Implementation

- 1. WP2 Workplans (by code owners)
- 2. Creation of a development team acting on flagship codes (mini-apps)
- 3. Porting campaign: your mileage may vary (see https://x-dev.pages.jsc.fz-juelich.de/models/ for details)

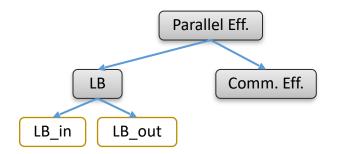
Fortran
DO CONCURRENT

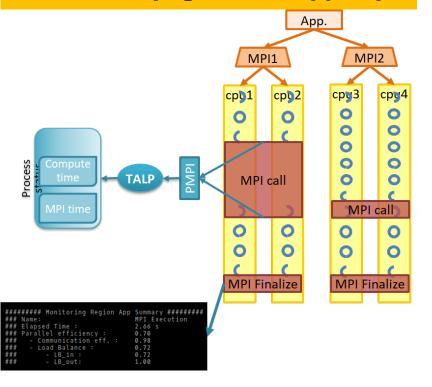


- ☐ Goal: make an "ad-hoc" campaign for effectively measure the performance portability in flagship codes (or available miniapps). Ingredients:
- 1. Computational budget on EuroHPC available (accelerated) hardware or even Software Development Vehicles (SDV)
- 2. Accelerated flagship codes (mini-apps) from T2.2 "arena"
- 3. Suitable performance portability metrics from literature to monitor the Performance Portability in different scenarios (see for example Navigating Performance, Portability, and Productivity | IEEE Journals & Magazine | IEEE Xplore)


IMPLEMENTATION

- 1. Performance portability campaign calendarization (by code)
- 2. Performance portability campaign
- 3. Performance portability campaign outcomes (to be used in deliverable D2.2). Lessons learned to flagship codes.


T2.3 Optimisation for Exascale


T2.4 Continuous Performance Efficiency Monitoring

- Goal: Provide lightweight, straightforward, and easy-to-use mechanism to measure the parallel efficiency of flagship codes at Exascale.
- Based on TALP that gathers POP metrics at runtime, without tracing.

Current implementation support MPI metrics (and something else)

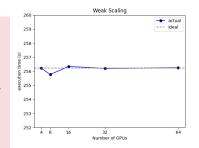
Development of new features in ChEESE-2P (e.g. GPUs support)

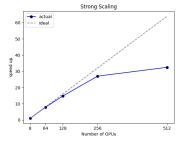
Outline

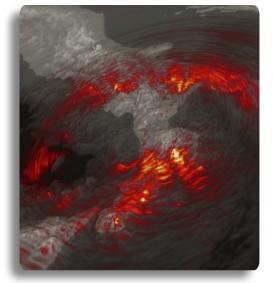
O1 ChEESE-2P overview

O2 The ChEESE-2P WP2 strategy

O3 SPECFEM3D showcase

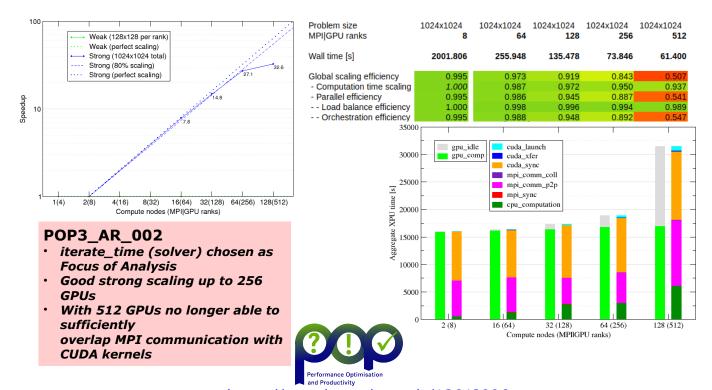

SPECFEM3D

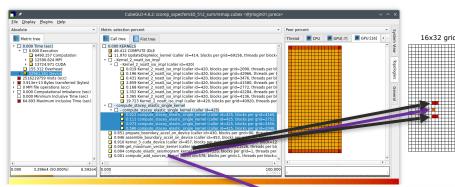



https://specfem.org/

- · Spectral-element method:
 - ? CPU, GPU, MPI (domain decomposition)
- · Solves linear seismic wave propagation in 3D models :
 - 2 Elastic, viscoelastic, piroelastic, and fluid solid interactions
 - Implements imaging and Full Waveform Inversion for complex models
- · Scalability evaluated on Leonardo booster:
 - ? Weak scaling : from 4 to 64 GPUs, 360448 mesh elements per GPU
 - excellent weak scaling up to 64 GPUs (and likely beyond)
 - Strong scaling: good strong scaling up to 256 GPUs overlapping MPI communication with GPU computation

SPECFEM3D has been optimized for various GPU architectures (using primarily CUDA and HIP as GPU programming model).

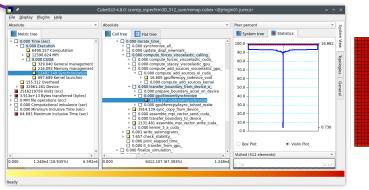




SPECFEM3D

https://zenodo.org/records/13643996

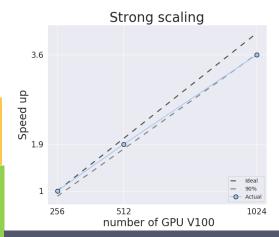
SPECFEM3D

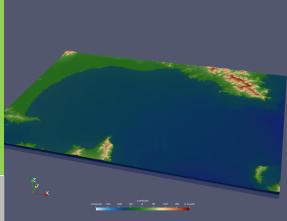

2D domain decomposition on GPUs

- · many kernels are well balanced
- some kernels execute much faster for interior compared to edges
- only four GPUs handle seismogram receivers
- only one GPU (#243) executes compute_add_sources_kernel

compute_add_sources_kernel executed on single GPU (#243) is rather short, however, results in all other GPUs having very long synchronization times in following transfer_boundary_from_device_a

 over two-thirds of CUDA synch time and over 30% of total CPU time




Using SPECFEM3D to address Scientific Challenge

SPECFEM3D used to numerically assess the underwater noise pollution and seismic risks induced by the unexploded ordnance disposal in the Bay of Hyères (France).

- Sismo-acoustic modelization : fluid (acoustic) / solid (viscoelastic)
- ☐ Test case : Coastal zone of the Rade d'Hyère (Southern France)
- Constraints:
- 1. Computation up to 30 Hz
- 2. Sedimentary basin very low shear-wave velocity small size elements (something like 6m in sediments)
- □ Size: 27 millions of elements (interpolation polynomials degree 7)
- □ 2 millions of time steps

SPECFEM3D modelization already performed on Petascale machine (CINECA Marconi 100)

Using SPECFEM3D to address Scientific Challenge

The video shows the vertical particle velocity on sea bottom

- The movie is related to the shaking of this surface while seismic waves propagate. The color is related to the intensity.
- Seismic wave propagation are triggered by an explosion on the middle of the zone and at the sea bottom.
- The goal is to estimate the maximum shaking we can expect in order to anticipate some damages in buildings at the coast (this area is densely populated) upstream the real explosions that are operated by French Navy.

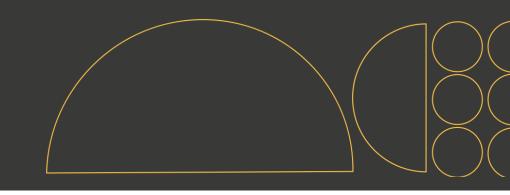
Using SPECFEM3D to address Scientific Challenge

Scientific Challenge planned in ChEESE-2P: increase the accuracy of the simulation

- Passing from 30 to 100 Hz reduce the element size by a factor 3.33
- With 100 Hz, 1 billion of elements and 4 millions time step are needed

Also the total memory needed for the simulation increase by a factor of 74 and the run time modeling a 100 second signal increase of a factor 123 The ultimate goal of the research requires significant computational resources, because of the domain size (about 20x20x5 km), the high upper limit of the explosion frequency range (300 Hz), and the low shear-wave velocity in sediments (200 m/s). This results in large meshes and very small time steps, pushing current supercomputers to their limits.

Exascale needed


Use of the improved performance portable version of SPECFEM3D from ChEESE-2P

Conclusions

- Cheese and POP have established a very productive collaboration
- Many codes audited during campaigns (10 in ChEESE-1P and 11 in ChEESE-2P)
- ChEESE-2P makes use of audits to:
 - Identify code bottlenecks (audit-driven optimisations)
 - Establish a code performance baseline
 - Continuous code monitoring based on POP metrics (including TALP)
- Additionally, some ChEESE codes have started making use of POP SLS
- Additional takeaways:
- ☐ POP tools needs to (continue to) improve their functionalities and evolve (with hw/sw)
- ☐ Metrics (performance, others?) are the key of success

Thank you!

http://cheese2.eu

 $@cheese_coe@techhub.social\\$

