

Successful interaction of ChESE and POP: CoEs cross-collaboration

Mauricio Hanzich and Claudia Rosas

Barcelona Supercomputing Center

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 823844

Our Story Today

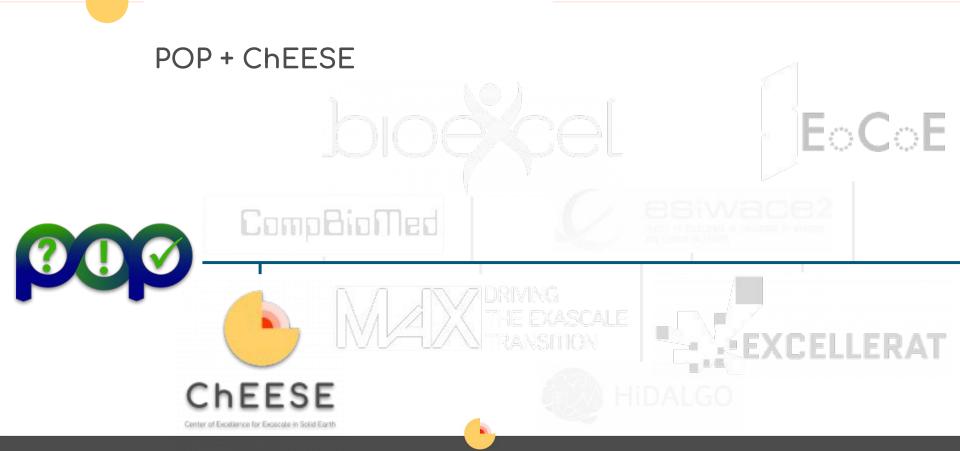
- CoEs
- What is ChEESE?
- Flagship Codes
- Fall3D: from level 3 and beyond

What is a CoE?

Center of Excellence

A premier organization providing an exceptional product or service in an assigned sphere of expertise and within a specific field of technology, [...], consistent with the unique requirements and capabilities of the CoE organization." --- The Software Engineering Institute of the Carnegie Mellon University

Centers of Excellence on HPC



ChEESE

What is ChEESE?

Center of Excellence in Solid Earth

ChEESE is a new initiative to integrate HPC and data across the Solid Earths' related disciplines in Europe under the same umbrella."

INFRAEDI-02-2018 - HPC PPP - Centres of Excellence on HPC

€ 7 683 241,25

EU Contribution

12 partners

7 countries

peer-reviewed publications

Up to date... and more to come

42 deliverables

15 Public

12 Pilot

demonstrators

10 Flagship codes

international events

Workshops, Meetings, Conferences, Hackatons

36 months

31 October 2021

ChEESE Structure

WP1 - Management

Administrative and financial management, Operational decision making, Internal communication.

WP4-Exascale Pilot Demonstrators

Geophysical simulations, reduce gap between HPC algorithms and end-users, end-to-end solution.

WP2 - HPC Software Engineering

Building blocks of the project, solve performance bottlenecks, prototype testing.

WP5 - Service Validation and Enabling

Make Pilot demonstrators available as services to a broader user community; implementation and validation

WP3 - Modelling workflows and tools

Address challenges: data management, complex workflows, post-processing and visualization.

WP6 - Dissemination, Training and Training


Communication and dissemination, identify exploitable results, training activities.

ChEESE Structure

WP1 - Management

Building blocks of the project, solve performance bottlenecks, prototype testing.

WP3 - Modelling workflows and tools

Address challenges: data management, complex workflows, post-processing and visualization.

WP4-Exascale Pilot **Demonstrators**

Geophysical simulations, reduce gap between HPC algorithms and end-users, end-to-end solution.

WP5 - Service Validation and Enabling

Make Pilot demonstrators available as services to a broader user community; implementation and validation

WP6 - Dissemination,

ChEESE Structure

WP2 - HPC Software Engineering

Building blocks of the project, solve performance bottlenecks, prototype testing.

- Modelling workflows tools

WP4-Exascale Pilot Demonstrators

WP6 - Dissemination,

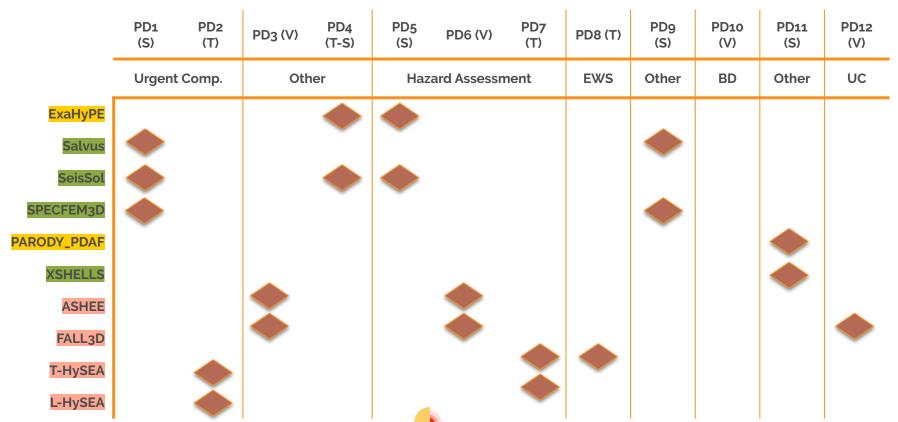
Flagship Codes

Flagship Codes

Level 1

Codes already at the Petascale, with current scalability proven up to about 10⁴ -10⁵ cores or above.

Level 2


Codes currently at a pre-Petascale, with scalability proven up to about 10³ -10⁴ cores.

Level 3

Codes with scalability hottlenecks at around or below 10³ cores.

Codes Vs. Pilots

Codes Vs. POP

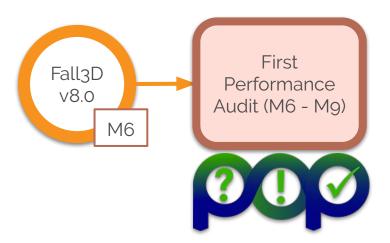
	Who?	Where?	What?
ЕхаНуРЕ	TUM (Developers)	SuperMUC	Almost perfect weak and strong scaling
Salvus	JSC (POP)	Piz Daint	I/O inefficiencies with scale.
SeisSol	JSC (POP)	MareNostrum IV	Load imbalances but good comp. and comm. effic.
SPECFEM3D	JSC (POP)	Irene	Good performance in all aspects
PARODY_PDAF	NAG (POP)	Joliot-Curie SKL	Hybrid performance
XSHELLS	NAG (POP)	KNL	Hybrid parallel efficiency pending to determine
ASHEE	INGV (Developers)	MareNostrum IV	Low weak scaling efficiency
FALL3D	BSC (POP)	MareNostrum IV	Fine granularity exposes low computation/comm ratio
T-HySEA	BSC (POP)	CTE Power	Scalability problems from MPI waiting time and overhead
L-HySEA	Reuse of T-HySEA		

Our target today... Fall3D

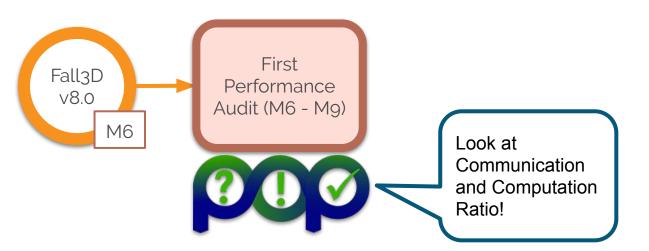
	Who?	Where?	What?	
ЕхаНуРЕ	TUM (Devs)	SuperMUC	Almost perfect weak and strong scaling	
Salvus	JSC (POP)	Piz Daint	I/O inefficiencies with scale.	
SeisSol		MareNostrum IV	Load imbalances but good comp. and comm. effic.	
SPECFEM3D	JSC (POP)	Irene	Good performance in all aspects	
PARODY_PDAF	NAG (POP)	Joliot-Curie SKL	Hybrid performance	
XSHELLS	NAG (POP)	KNL	Hybrid parallel efficiency pending to determine	
ASHEE	INGV (Devs)	MareNostrum IV	Low weak scaling efficiency	
FALL3D	BSC (POP)	MareNostrum IV	Fine granularity exposes low computation/comm ratio	
T-HySEA	BSC (POP)	CTE Power	Scalability problems from MPI waiting time and overhead	
L-HySEA	Reuse of T-HySEA			

Fall3D

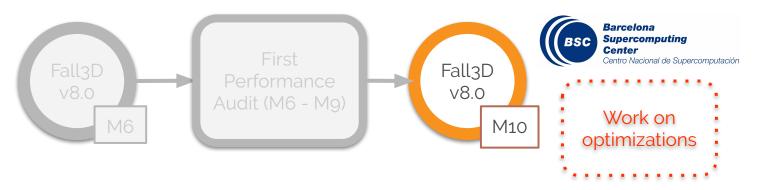
From level 3 and beyond

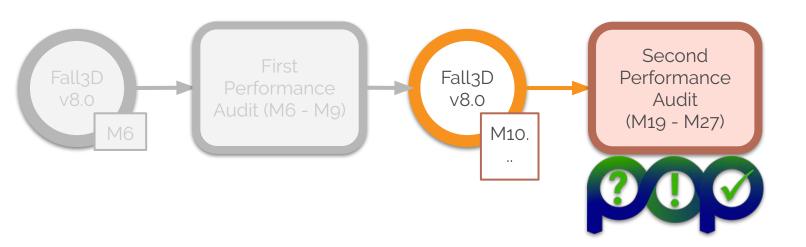


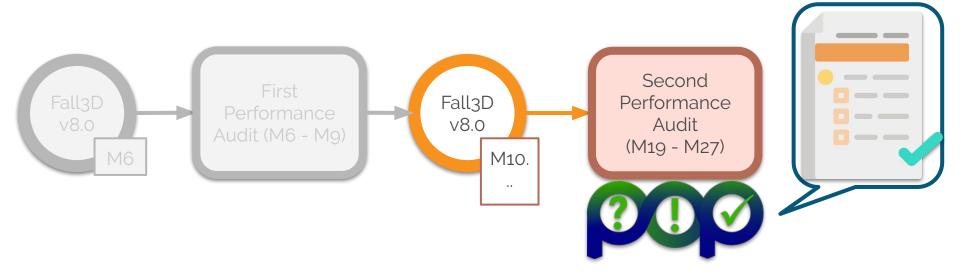
V8 Implemented in ChEESE

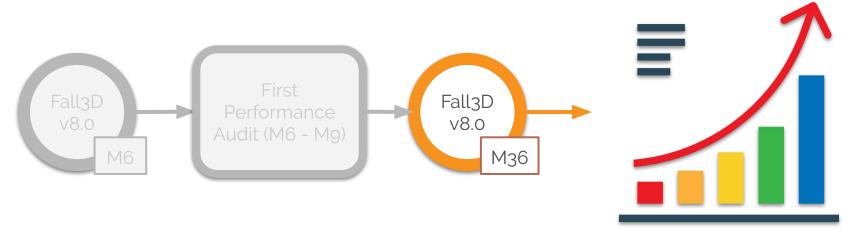

- Atmospheric dispersal and deposition of tephra particles
- Lax-Wendorff (LW) central-difference scheme
- Parallelization on particle bins (expensive in comms)
- Master responsible for I/O

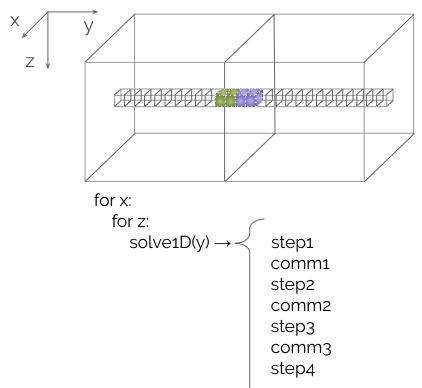
- Extended model for additional types of particles, aerosols and radionuclides
- High-resolution central-upwind scheme; optionally a 4th-order Runge-Kutta explicit scheme
- Parallelisation strategy based on a full 3D domain decomposition
- Parallel model I/O using netCDF-Par and parallel model pre-process.

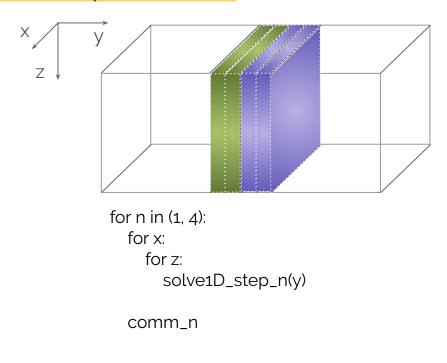




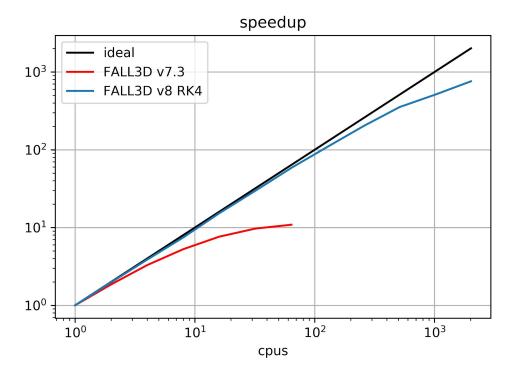




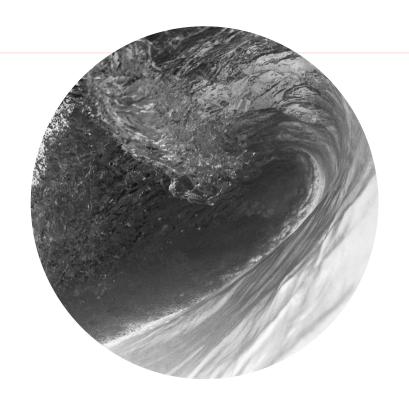

Optimization


Improve computational and communication ratio

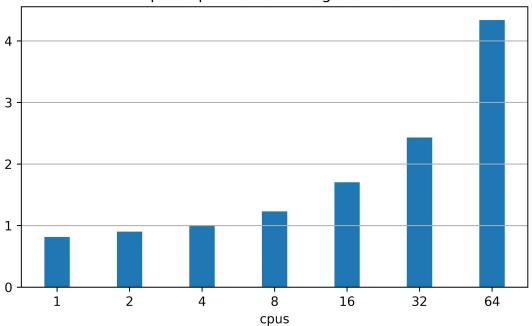
Which are the communication problems?



Optimization issues

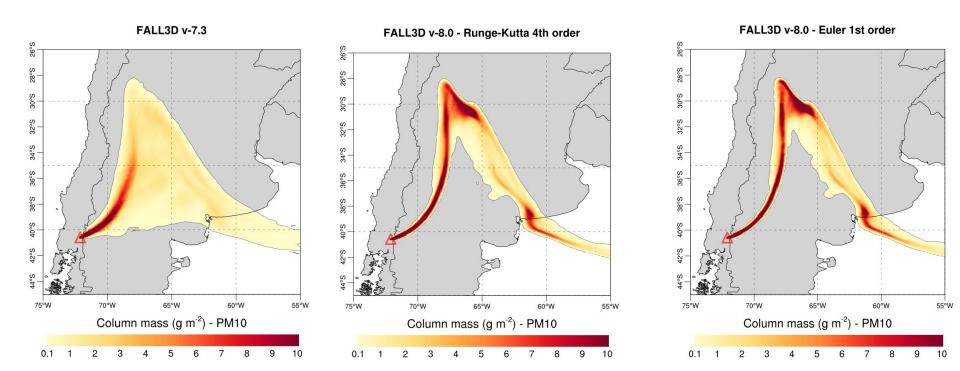

- Higher computing/communication ratio
- Data rearrangement, aligned with computing dimension
- Reduced decision statements in iterative code region
- Removed memory allocations from iterative code region
- Chance of using 1st-degree Euler solver

V7.3 serie vs V8(RK4) serie



Euler
Uses same amount of resources yet sacrifices precision

Simplified computation from order 4 to order 1



speedup ratio v8 EU1 against v7.3

V7.3 serie vs V8(EU1) serie

Dispersion results from FALL3D depending on the version

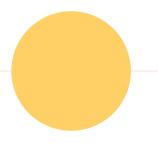
Next steps in Fall3D

- In last year of ChEESE, there will be another performance audit for Fall3D
- Continue improving scalability and efficiency of current new version of Fall3D

To publish the current performance of the code (already under review).

Next steps in ChEESE

- D2.1b Code Audit (M27) same methodology for the ten flagship codes
- Performance improvements in scalability in most of them
- Promote the successful interaction with POP as transversal CoE.
 - Already used in other H2020 projects (e.g. ENERXICO)



66

Performance optimization of HPC codes following POP's methodology have proven to be **efficient** in time and use of resources and **significantly useful** for scientific software developers."

"The interaction has been **successful** not only within CoEs but also easily **exported** to international project with strong participation of Latin America."

Thanks!

Any questions?

You can find us at

- mhanzich@bsc.es
- crosas@bsc.es

