
EU H2020 Centre of Excellence (CoE) 1 December 2018 – 30 November 2021

Grant Agreement No 824080

On the ROI of
Parallel Performance Optimization

Bernd Mohr (Jülich Supercomputing Centre)

POP CoE

• A Centre of Excellence

• On Performance Optimisation and Productivity

• Promoting best practices in parallel programming

• Providing FREE Services
• Precise understanding of application and system behaviour

• Suggestion/support on how to refactor code in the most productive way

• Horizontal
• Transversal across application areas, platforms, scales

• For (EU) academic AND industrial codes and users !

2

• Who?
• BSC, ES (coordinator)

• HLRS, DE

• IT4I, CZ

• JSC, DE

• NAG, UK

• RWTH Aachen, IT Center, DE

• TERATEC, FR

• UVSQ, FR

A team with

• Excellence in performance tools and tuning

• Excellence in programming models and practices

• Research and development background AND
proven commitment in application to real academic and industrial use cases 3

Partners

Why?

• Complexity of machines and codes

 Frequent lack of quantified understanding of actual behaviour

 Not clear most productive direction of code refactoring

• Important to maximize efficiency (performance, power) of
compute intensive applications and productivity of the
development efforts

What?

• Parallel programs, mainly MPI/OpenMP
• Although also CUDA, OpenCL, OpenACC, Python, …

4

Motivation

The Process …

When?

December 2018 – November 2021

How?

• Apply

• Fill in small questionnaire
describing application and needs
https://pop-coe.eu/request-service-form

• Questions? Ask pop@bsc.es
• Selection/assignment process

• Install tools @ your production machine (local, PRACE, …)

• Interactively: Gather data Analysis Report

5

https://pop-coe.eu/request-service-form
mailto:pop@bsc.es

• Parallel Application Performance Assessment
• Primary service

• Identifies performance issues of customer code (at customer site)

• If needed, identifies the root causes of the issues found and
qualifies and quantifies approaches to address them (recommendations)

• Combines former Performance Audit (?) and Plan (!)

• Medium effort (1-3 months)

• Proof-of-Concept ()
• Follow-up service

• Experiments and mock-up tests for customer codes

• Kernel extraction, parallelisation, mini-apps experiments to show
effect of proposed optimisations

• Larger effort (3-6 months)

Note: Effort shared between our experts and customer!

FREE Services provided by the CoE

• Application Structure
• (If appropriate) Region of Interest
• Scalability Information
• Application Efficiency

• E.g. time spent outside MPI

• Load Balance
• Whether due to internal or external factors

• Serial Performance
• Identification of poor code quality

• Communications
• E.g. sensitivity to network performance

• Summary and Recommendations

7

Outline of a Typical Audit Report

• The following metrics are used in a POP Performance Audit:

• Global Efficiency (GE): GE = PE * CompE

• Parallel Efficiency (PE): PE = LB * CommE

• Load Balance Efficiency (LB): LB = avg(CT)/max(CT)

• Communication Efficiency (CommE): CommE = SerE * TE

• Serialization Efficiency (SerE):
SerE = max (CT / TT on ideal network)

• Transfer Efficiency (TE): TE = TT on ideal network / TT

• (Serial) Computation Efficiency (CompE)

• Computed out of IPC Scaling and Instruction Scaling

• For strong scaling: ideal scaling -> efficiency of 1.0

• Details see https://sharepoint.ecampus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/Metrics.pdf

8

Efficiencies

CT = Computational time
TT = Total time

https://sharepoint.ecampus.rwth-aachen.de/units/rz/HPC/public/Shared%20Documents/Metrics.pdf

Efficiencies

2 4 8 16

Parallel Efficiency 0.98 0.94 0.90 0.85

Load Balance 0.99 0.97 0.91 0.92

Serialization efficiency 0.99 0.98 0.99 0.94

Transfer Efficiency 0.99 0.99 0.99 0.98

Computation Efficiency 1.00 0.96 0.87 0.70

Global efficiency 0.98 0.90 0.78 0.59

9

2 4 8 16

IPC Scaling Efficiency 1.00 0.99 0.96 0.84

Instruction Scaling Efficiency 1.00 0.97 0.94 0.91

Core frequency efficiency 1.00 0.99 0.96 0.91

Tools

• Install and use already available monitoring and analysis technology

• Analysis and predictive capabilities

• Delivering insight

• With extreme detail

• Up to extreme scale

• Open-source toolsets

• Extrae + Paraver

• Score-P + Cube + Scalasca/TAU/Vampir
• Dimemas, Extra-P

• MAQAO

10

• Commercial toolsets

(if available at customer site)

• Intel tools

• Cray tools
• ARM tools

Target customers

• Code developers

• Assessment of detailed actual
behaviour

• Suggestion of most productive
directions to refactor code

• Users

• Assessment of achieved
performance in specific
production conditions

• Possible improvements modifying
environment setup

• Evidence to interact with code
provider

• Infrastructure operators

• Assessment of achieved
performance
in production conditions

• Possible improvements from
modifying environment setup

• Information for time computer
time allocation processes

• Training of support staff

• Vendors

• Benchmarking

• Customer support

• System dimensioning/design

11

Overview of Codes Investigated

12

13

Status after 2½ Years (End of Phase1)

• 139 completed or reporting to customer

• 13 more in progress

Performance
Audits and

Plans

• 19 completed Proofs of Concept

• 3 more in progress
Proof-of-
Concept

Area Codes

Computational Fluid Dynamics DROPS (RWTH Aachen), Nek5000 (PDC KTH), SOWFA (CENER), ParFlow
(FZ-Juelich), FDS (COAC) & others

Electronic Structure Calculations ADF, BAND, DFTB (SCM), Quantum Expresso (Cineca), FHI-AIMS
(University of Barcelona), SIESTA (BSC), ONETEP (University of Warwick)

Earth Sciences NEMO (BULL), UKCA (University of Cambridge), SHEMAT-Suite (RWTH
Aachen), GITM (Cefas) & others

Finite Element Analysis Ateles, Musubi (University of Siegen) & others

Gyrokinetic Plasma Turbulence GYSELA (CEA), GS2 (STFC)

Materials Modelling VAMPIRE (University of York), GraGLeS2D (RWTH Aachen), DPM
(University of Luxembourg), QUIP (University of Warwick), FIDIMAG
(University of Southampton), GBmolDD (University of Durham), k-Wave
(Brno University), EPW (University of Oxford) & others

Neural Networks OpenNN (Artelnics)

14

Example POP Users and Their Codes

Programming Models Used

15

MPI
60

56
OpenMP

12

11

Others**
8

1

Accelerator

3

4+4

1

1

* Based on data collected for 161 POP Performance Audits

** MAGMA
Celery
TBB
GASPI
C++ threads
MATLAB PT
StarPU
GlobalArrays
Charm++
Fortran Coarray

Programming Languages Used

16

Fortran
59 31

C / C++
47

2

Python
4

3
Other**

4 5

6

** TCL
Matlab
Perl
Octave
Java

* Based on data collected for 161 POP Performance Audits

17

Application Sectors

0%

5%

10%

15%

20%

25%

30%

Chemistry Engineering Earth
Science

CFD Energy Other Machine
Learning

Health

All SMEs

18

Customer Types

55%

25%

7%

13%

Academic

Research

Large company

SME

Analysis of Inefficiencies

19

20

Leading Cause of Inefficiency

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

Communication issues

Computation issues

Load Balance

21

Inefficiency by Parallelisation

0%

20%

40%

60%

80%

100%

120%

MPI OpenMP Hybrid MPI + OpenMP

Load Balance Computation Communication

Success Stories

22

• See https://pop-coe.eu/blog/tags/success-stories

• Performance Improvements for SCM’s ADF Modeling Suite

• 3x Speed Improvement for zCFD Computational Fluid Dynamics Solver

• 25% Faster time-to-solution for Urban Microclimate Simulations

• 2x performance improvement for SCM ADF code

• Proof of Concept for BPMF leads to around 40% runtime reduction

• POP audit helps developers double their code performance

• 10-fold scalability improvement from POP services

• POP performance study improves performance up to a factor 6

• POP Proof-of-Concept study leads to nearly 50% higher performance

• POP Proof-of-Concept study leads to 10X performance improvement for customer

23

Some PoC Success Stories

Improvements

Reductions

https://pop-coe.eu/blog/tags/success-stories

• Toolbox for time domain acoustic and ultrasound simulations
in complex and tissue-realistic media

• C++ code parallelised with Hybrid MPI and OpenMP (+ CUDA)

• Executed on Salomon Intel Xeon compute nodes

• Key audit findings:
• 3D domain decomposition suffered from major load imbalance :

exterior MPI processes with fewer grid cells took much longer than interior

• OpenMP-parallelised FFTs were much less efficient for grid sizes of exterior,
requiring many more small and poorly-balanced parallel loops

• Using a periodic domain with identical halo zones for each MPI rank
reduced overall runtime by a factor of 2

24

k-Wave – Brno Uni. of Technology

www.k-wave.org

• Comparison time-line before (white) and after (purple) balancing, showing
exterior MPI ranks (0,3) and interior MPI ranks (1,2)
• User code in green, MPI synchronization in red, OpenMP synchronization in cyan

25

k-Wave – Brno Uni. of Technology

• Electron-Phonon Wannier (EPW) materials science DFT code;
• part of the Quantum ESPRESSO suite
• Fortran code parallelised with MPI
• Audit of unreleased development version of code
• Executed on ARCHER Cray XC30 (24 MPI ranks per node)

• Key audit findings:
• Poor load balance from excessive computation identified
• (addressed in separate POP Performance Plan)
• Large variations in runtime, likely caused by IO
• Final stage spends a great deal of time writing output to disk

• Report used for successful PRACE resource allocation

26

EPW – University of Oxford

• Original code had all MPI ranks writing the result to disk at the end
• POP PoC modified this to have only one rank do output

• On 480 MPI ranks, time taken to write results fell from over 7 hours
to 56 seconds: 450-fold speed-up!

27

EPW – University of Oxford

epw.org.uk

• Combined with previous
improvements, enabled EPW
simulations to scale to previously
impractical 1920 MPI ranks

• 86% global efficiency with 960 MPI
ranks

(Eight) Customers Success Feedback

What is the observed performance gain after
implementing recommendations?

25%
25%
20% overall, 50% for the given module
50-75% (case dependent)
12%
Up to 62 %, depending on the use case.
6 - 47 % depending on the test case.
15%

Only
performance

gain

Better
scalability

Possibility to
run on a
slower

platform
(handling the
same problem

size)

Possibility to
treat larger
problems

Possibility to
better exploit

new
architectures
(mixing multi-

and many-
core servers)

Other (please
specify)

0%

10%

20%

30%

40%

50%

60%

70%

80%

What are the main results?

A few person x
days

A few person x
weeks

A few person x
months

0%

10%

20%

30%

40%

50%

60%

How much effort was necessary?

Summary & Conclusion

29

30

Customer Acquisition

• 86% of users needed multiple interactions before signing up

• Users with only 1 interaction referred by existing users

• Average number of interactions to sign up = 3.2

• Maximum number of interactions to sign up = 11

Interactions
with Leads

• Over 1300 leads contacted throughout the project

• Conversion rate of 10.8% from leads to user

• Only 17 signed up without direct contact from POP
Conversions

Costumer Feedback

31

• About 90% very satisfied or satisfied with service

• About half of the customers signed-up for a follow-up
service

Performance Audits
(73 customers)

• About 90% very satisfied or satisfied with service

• All customers thought suggestions were precise and clear
and 70% plan to implement the suggested code
modifications

• About 2/3 plan to do use the POP services again

Performance Plans
(11 customers)

• All customers very satisfied or satisfied with this service

• About 80% plan to implement further code modifications
or complete the work of the POP experts

Proof-of-Concepts
(8 customers)

* Based on data collected in 92 customer satisfaction questionnaires
and 52 phone interviews with customers

32

ROI Examples

Application Savings after POP Proof-of-Concept

• POP PoC resulted in 72% faster-time-to-solution

• Production runs on ARCHER (UK national academic supercomputer)

• Improved code saves €15.58 per run

• Yearly savings of around €56,000 (from monthly usage data)

Application Savings after POP Performance Plan

• Cost for customer implementing POP recommendations: €2,000

• Achieved improvement of 62%

• €20,000 yearly operating cost

• Resulted in yearly saving of €12,400 in compute costs ROI of 620%

• POP CoE Phase 1 finished in March 2018 after 2½ years

• Successfully demonstrated expertise and impact

• 152 Audits + Perf Plans / 22 Proof-of-Concept / 21 requests cancelled

• 158 closed / 16 in progress

• Intensive dissemination via website, blog articles, tweets, newsletter, …

 Expected more interest from industry / SME / ISVs

• POP CoE Phase 2 restarted in December 2018 for 3 more years

• New Service Structure (Performance Assessment combines Audit and Plan)

• New Project Partners (IT4I, UVSQ)

• New Co-design Data Repository

• Extension of Efficiency Model: Vectorization, I/O, GPUs, …

33

Summary & Conclusion (I)

• Issues identified

• FREE (Money) ≠ FREE (Efforts, Time)

• To much(?) customer effort (providing code, input, measurements?, feedback)

• Desire to serve more industrial customers / SMEs, BUT

• Resistance for allowing us to publish their results / success stories

• Almost every time require NDA agreements

• Sustainability

• Real costs audit (EUR 16K-18K) >> Price customer would pay (5K-7K)

34

Summary & Conclusion (II)

Dissemination and Contact

35

• POP User Portal

• Access to all
public information
and services

12-Dec-2018 36

Website – www.pop-coe.eu

http://www.pop-coe.eu/

• Typically 2 new articles
per month

• Easy filtering via Tags, e.g

• Success Stories

• Events

• Webinars

• …

• RSS feed

• https://pop-coe.eu/blog/rss

Blog – https://pop-coe.eu/blog

12-Dec-2018 37

https://pop-coe.eu/blog

Follow us on Twitter @POP_HPC

12-Dec-2018 38

• Important announcements

• Serves also as user forum

LinkedIn Group

12-Dec-2018 39

• Subscribe on POP website

• Newsletter archive: https://pop-coe.eu/news/newsletter

Quarterly Email Newsletter

12-Dec-2018 40

https://pop-coe.eu/news/newsletter

• See https://pop-coe.eu/blog/tags/webinar

• Or see our channel youtube.com/POPHPC

• Already available:
• How to Improve the Performance of Parallel Codes

• Using OpenMP Tasking

• Parallel I/O Profiling Using Darshan

• Getting Performance from OpenMP Programs on NUMA Architectures

• Understand the Performance of your Application with just Three Numbers

• The impact of sequential performance on parallel codes

• Large scale Application Execution Performance Assessment

• POP Case Study: 3x Speed Improvement for Zenotech's zCFD Solver

• Exascale Matrix Factorization: Using HPC and ML for Drug Discovery

• Software for Linear Algebra Targeting Exascales (SLATE) Project

• Implementing I/O Best Practices to Improve System Performance with Ellexus

41

Webinars / YouTube

https://pop-coe.eu/blog/tags/webinar
https://www.youtube.com/POPHPC

9/25/2019 42

Contact:
https://www.pop-coe.eu
mailto:pop@bsc.es

@POP_HPC
youtube.com/POPHPC

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080.

Performance Optimisation and Productivity
A Centre of Excellence in HPC

