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Services Provided

The Performance Optimisation and Productivity (POP) Centre of
Excellence in Computing Applications provides performance
optimisation and productivity services for academic AND
industrial code in all domains!

The services are free of charge to research organisations, SMEs,
ISVs and companies in Europe!

What are the main performance issues of your code?
? Performance Audit Service

e Primary service

* Small effort (typically 1 month)

e Customer receives report

Determine root causes of issues found and quantify approaches
to address them!

! Parallel Application Performance Plan
* Follow-up on the audit service
* Longer effort (typically 1-3 months)
* Customer receives report

Perform experiments and code changes to show effect of
proposed optimizations

v' Proof-of-Concept
* Follow-up on the performance plan service
* 6 months effort
» Customer receives software demonstrator

Customer Satisfaction

customers)

| customers)

Over 90% very satisfied or satisfied with service

About half of the customers signed-up for a
follow-up service

About 90% very satisfied or satisfied with service

All customers thought suggestions were precise
and clear and 70% plan to implement the
suggested code modifications

About 2/3 plan to do use the POP services again

All customers very satisfied or satisfied with this
service

Over 80% plan to implement further code modifi-
cations or complete the work of the POP experts

17
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GraGLeS2D Success Story

POP Proof-of-Concept study leads to 10X performance
improvement for customer

The Institute of Physical Metallurgy and Metal Physics of RWTH Aachen
University (IMM) develops a code for the simulation of microstructure
evolution in polycrystalline materials, called GraGLeS2D. The OpenMP
parallel code is designed to run on large SMP machines in the RWTH
compute cluster with 16-sockets and up to 2 TB of memory. After a

POP performance audit of the code, several performance issues were
detected and a performance plan on how these issues could be resolved
was set up.

To verify the proposed optimization steps, POP experts and the code
developer at IMM implemented these steps in close collaboration as the
first proof-of-concept study done in POP. The optimizations include:

* The use of a memory allocation library optimized for multi-threading.

* Reordering the work distribution to threads to optimize for data locality
between neighboring cells. (see Figure below)

» Algorithmic optimizations in the convolution algorithm.

» Code restructuring to enable vectorization in parts of the
computation.

Initial work /data distribution over sockets (left) compared to the

optimized distribution (right).
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Initial work /data distribution over sockets (left) compared to the optimized distribution (right).

After these optimization steps were implemented, a significant perfor-
mance improvement was achieved. For the hotspot of the application, the
convolution region, the speedup going from 1 to 16 sockets is about
15 instead of 6 as it was before the optimization. Overall, the runtime of
this region was improved by a factor of more than 10X. The proof-of-
concept verified that the planned optimizations indeed resulted in signifi-
cantly better code performance.

Performance Audit and Plan
Statistics

O
Programming

Models used

)0

* Based on data collected for /
161 POP Performance Audits |

a0

** MAGMA
Celery
TBB
GASPI
C++ threads
MATLAB PT
StarPU
GlobalArrays
Charm++
Fortran Coarray

dW“"’

Programming

xean
of Languages used

<
c
12
x

59

* Based on data collected for
161 POP Performance Audits

** TCL
Matlab
Perl
Octave

Oth e(‘* Java
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sphFluids Success Story

Insights into computer graphics code for fluids led to
a factor of 6 improvement

The computer animation department of the Stuttgart Media University,
in cooperation with the Visualisation Research Centre of the University
of Stuttgart, develops a Smoothed Particle Hydrodynamics solver to
simulate fluids for computer graphics applications called sphFluids.
The Code is written in C++ and was mainly developed as a cross-platform
desktop application, which is parallelized with OpenMP.

The sphFluids code supports the most common pressure as well as viscosity
models. Additionally, various approaches to model surface tension are
integrated. More details can be found in the paper ,,Evaluation of Surface
Tension Models for SPH-Based Fluid Animations Using a Benchmark Test®.

The sphFluids code underwent a POP performance audit, which identified
several issues related to the sequential
computational performance.

The good information exchange with the
POP experts during the study helped the
code developers to identify critical parts
in their application.

One of the issues found was code regions
with low instruction per cycle (IPC)
values. Several causes for this were
pointed out including:

» Definitions of variables in inner loops

e Unnecessary operations caused byindirections in the code design
¢ Non-inlined functions

e Cache misses, due to memory calls

Based on the audit, the code developers could optimize the identified parts
in the code by, e.g., inlining very short functions that were used frequently
or, regarding the cache misses, reorder the particle processing order. These
modifications improved the performance of the code by about 100 %.
Furthermore, they identified similar issues in other parts of the code and
reviewed the overall code design. The developers came to the decision

to completely rewrite the simulation code. Using the insights gained from
the POP-Experts, they could optimize the simulation performance further,
which led to an overall performance improvement up to 500 % - 600 %,
depending on the scenario and pressure model used.

zCFD Success Story

3x Speed Improvement for Zenotech’s zCFD Computational Fluid
Dynamics Solver

zCFD by Zenotech is a density based finite volume and Discontinuous
Galerkin (DG) computational fluid dynamics (CFD) solver for steady-

state or time-dependent flow simulation. It decomposes domains using
unstructured meshes. It is written in Python and C++ and parallelised with
OpenMP and MPI.

POP conducted a Performance Audit to identify potential areas for
improvement. This identified that the code was spending a surprisingly
large amount of time executing in serial and that one particular OpenMP
loop was suffering from load imbalance. POP also noted that the CPU
frequency was being lowered when the code was run on the maximum
number of threads (12 for the machine used in the Audit).

As a result, Zenotech made a number of changes to the code:
 Parallelising serial portions of code.
* Improving load balance.

* Removing OpenMP regions that were being created on multiple threads.

* Memory management modifications.
* Changing execution environment settings to boost CPU performance.

For the test case used in the study, these improvements meant the code
ran 1.65x faster on 12 threads. When Zenotech applied the modified code
to a test case that was 100x larger, they observed a 3x performance
improvement over the old code on 12 threads. The average cycle time
fell from 3,253ms to 1,185ms, which corresponds to going from 10.4
GFlop/s to 30.6 GFlop/s for a single Broadwell socket.

13
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k-Wave Success Story

Open-source acoustic simulation code runtime halved

k-Wave is an open-source toolbox for time domain acoustic and ultrasound
simulations in complex and tissue-realistic media. Simulation functions are
based on the k-space pseudospectral method.

POP was requested by developers from Brno University of Technology to
audit the C++ version parallelised with MPI+OpenMP executing on the
Salomon supercomputer hosted by IT4Innovations in the Czech Republic.
A configuration of 32 dual-processor Intel Xeon compute nodes was used
running 64 MPI processes each with 12 OpenMP threads. The 3D domain
decomposition employed (4x4x4 process arrangement) was discovered
to suffer from poor performance with large amounts of both MPI and
OpenMP synchronization time arising from major load imbalance.

OMP . 8:3 -
Mast...ad:4
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The figure shows an extract of the time-line visualization, showing the
three FFTW phases for one timestep of the first four MPI processes.
Originally (top with white background), the interior processes (ranks 1&2)
wait in MPI communication (red) for the much slower exterior processes
(ranks 0&3) where many more small and poorly-balanced parallel loops
have lots of OpenMP synchronization time (cyan). Although the exterior
MPI processes have fewer grid cells, the OpenMP-parallelized FFTs from
the FFTW library are much less efficient as they have a larger FFT base.

With this insight, the developers were quickly able to apply a periodic
domain with identical halo zones for each MPI rank (lower time-line with
lilac background), with the result that the execution is now more than
twice as fast. Both versions of the code are compared in the POP
performance audit.

BPMF Success Story

Data analysis code used to predict movie ratings
improved by around 40 %

Modelling complex data sets is a major problem today. An example here
is prediction of compound-on-target-activity in chemogenomics from

the ChEMBL data set with more than 2 Million compound records. The
compound-on-target-activity study at large scale is an extremely impor-
tant question in the process of discovering new drugs, which is currently
addressed in the EXCAPE project. The Bayesian Probabilisitc Matrix
Factorization (BPMF) is an efficient method to solve these kind of
problems. The BPMF code was analysed in a POP Audit and Performance
Plan service activity. While the BPMF code had already shown scalability
over several 100 nodes and also good efficiency on the node level,

POP experts could still identify points for improvement.

So a follow-up Proof of Concept study was performed together with

the customer. During the study several points were addressed. Besides
optimization of the linear algebra computations and improvement of the
selection process for optimized algorithms inside BMBF, the main and
most challenging issue was load balance. Due to the nature of the prob-
lems solved with BPMF, the datasets include very inhomogeneous data,
which result in load balance problems in the parallelization. BPMF there-
fore comes with a hybrid MPI+OpenMP parallelization. The still existing
load balance problem found was at the lower OpenMP level. Here a single
level OpenMP parallelization was used on the node level.

Before After

2ms 2w

The POP experts now implemented a second nesting level and also made
use of OpenMP tasks, which solved the load balance problem. Originally

the load balance of the problematic code part was 42.5% - after the
modifications 98.9 %. Finally, the improvements made in this POP Proof of
Concept were evaluated with three different datasets achieving speedups
between 1.6 and 1.8 that correspond to runtime reductions between
38 and 44 %.
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