fuAnonpoud pue
uonesiwndQ aduew.04iad

a11sgam ass uonduosqgns
19119]SMaU pue SIeulgam dOd 4104

i9p092 HdH 1noA

sa-0sq@dod lewy

JOJ. SGOII\,IGS ino na-a0o-dod mmm / /:sdy :99M

OdH dOd @qn] noA
oSh pjnoys noA KqM dnoi8 4od :ujpesur
OdH dOd® Henim|

10B3U0)

isdinua8ui4 anoA je
S991A19S uonesiwndo

pue sisAjeuy asuew.i0j13d

Imprint

Editor:

Graphic Design:

Photos:

Copyright:

Bernd Mohr
(Forschungszentrum Jilich GmbH)

Nadine Daivandy
(Forschungszentrum Jilich GmbH)

POP project (page 2)

Graphics provided by customers,
used with permission

POP Project
March 2018

A Centre of Excellence
in Computing Applications

Performance Optimisation
and Productivity

The POP Centre of Excellence is funded from October 2015 to

March 2018.

n B, V ‘
. 29319 Hiny
“SaneiaL

EITNER)
ONILNdINOJY3dNS

HOINe ﬁjgzlss-ulnﬁ?i r’ ;Seu

uIoBINAWOUBANS 8P [BUOIDEN 043U8D)

FEITIEY)

S :I: P | 1 H Bunndwoaiadng
euojsoseg

S9SBO 9SN |BLIISNPUI PUB DIWBPLI. [B3J 0] JUSWIIWWOD UBAOI] e

punoJ8xoeq juswdojoAsp puR Yoiessay e

sao11oe.d pue sjgpow Suiwweldold ul 89Ud|[|99X3

Suluny pue sj003 8ouewlolad Ul 89Ud[|99XT

wes] 40d 24l

8l

%029 40 10¥ <= S1509 91ndwod Ul 00F‘ZL 3 J0 Suines Alueak ul pajnsay e
1500 3uijesado Ajueak 000023

9% Z9 40 JuswanoIdwl PaASIYDY e

000‘Z 3 :SUOIIBPUBWIWO0D3aJ dOd Suipuawa|dwi JBWOo3ISND 10} 1S0D)

ue|d @ouew.0}iad dOd 193k sSuineg uonyeoiddy

(e3EP 93ESN AjYIUOW WOIY) 000‘9G 3 PUNOIR JO SSUIABS AlIBBA o

unJ Jad 8G°G| 3 SoABS 9p0d paroiduwl| e
(1o3ndwosiadns ojwapese [euoiieu dN) YIHOYY UO SunJ uoiloNpold e

UOIIN|0S-0}-dWI}-191Se) % Z/ Ul PaINsal D0d dOd o

1de@ou09H-J0-00.4d dOd 191 sSuineg uonesijddy

sa|dwex3 |0y

Services Provided

The Performance Optimisation and Productivity (POP) Centre of
Excellence in Computing Applications provides performance
optimisation and productivity services for academic AND
industrial code in all domains!

The services are free of charge to research organisations, SMEs,
ISVs and companies in Europe!

What are the main performance issues of your code?
? Performance Audit Service

e Primary service

* Small effort (typically 1 month)

e Customer receives report

Determine root causes of issues found and quantify approaches
to address them!

! Parallel Application Performance Plan
* Follow-up on the audit service
* Longer effort (typically 1-3 months)
* Customer receives report

Perform experiments and code changes to show effect of
proposed optimizations

v' Proof-of-Concept
* Follow-up on the performance plan service
* 6 months effort
» Customer receives software demonstrator

Customer Satisfaction

customers)

| customers)

Over 90% very satisfied or satisfied with service

About half of the customers signed-up for a
follow-up service

About 90% very satisfied or satisfied with service

All customers thought suggestions were precise
and clear and 70% plan to implement the
suggested code modifications

About 2/3 plan to do use the POP services again

All customers very satisfied or satisfied with this
service

Over 80% plan to implement further code modifi-
cations or complete the work of the POP experts

17

Jadojanaq zs9o “aded ydaso

[9DINI3S JUS[[89X3 U]
BISNYIUS pue 8]qeaspajmouy AieA se/
9 d0d 4nQ |00} uopesiwido [nya:
943X UP SI]| "S8.NJ28}IY2IE 9,
1 S/ wq;uo}?/e S uoueoudde an

soluMy 039 ‘zado omaqoy IQ —

.. 'S491SNnj2 493ndwo?
Suissaoo.d |4y Sunnuswajdwi Aq aiow }
e a/04dwW [13S UBD dM PUY ‘UOISIOA [BLISS

8y} 03 paiedwod usym ‘sawiiy G 03 dn
JausSisaq [einap dn-paads o0} soluje.
padjay sey 129/0.d JOd 8y ‘U0l

4no 03 o1do} Surpsasaul Ajowis
ue s1 8uipndwos aouewiofiad y:

dojanap FUIdINVA ‘SueA3 pieyory —

« Hpne ay3
JO SS3U|NJasn pue paads ayj 10j 89INI8S
8y} puswiwoda. Ajysiy pinom | 'sd9
pow uo yuswanosdwi douewriofad z
298 b 9AIS Aew S1y) 1So88ns s3nsa.
Ij8dd “Spuswano.dwi aouewiofiad
0/ 0] Sea.e 21J199ds pue s30ds joy
DI Ul [nydjay Ajawaixae usaq

O FHIdNVA 841 40 1P

sajonp Jawolsn9)

91

sjpny 9oueuLI0fiad dOd 191 10f pa3ajj0d ejep uo paseq

JINS

Auedwod a8ie7 m
YoJeasay m
J|WapedY =

sadA] 1awo0lsn)

SINS = |Ivm

Suiuieaq ERIIE]RIN
yieaH aulyde 19Y10 A8usu3 aid yue3 Suusauiduy Ansiwayd

. I %0
11

%01

%ST

%0C
%ST

%0€

$10399S uonesiddy

sonsnels
ue|d pue }pny aduew.i0dd

GraGLeS2D Success Story

POP Proof-of-Concept study leads to 10X performance
improvement for customer

The Institute of Physical Metallurgy and Metal Physics of RWTH Aachen
University (IMM) develops a code for the simulation of microstructure
evolution in polycrystalline materials, called GraGLeS2D. The OpenMP
parallel code is designed to run on large SMP machines in the RWTH
compute cluster with 16-sockets and up to 2 TB of memory. After a

POP performance audit of the code, several performance issues were
detected and a performance plan on how these issues could be resolved
was set up.

To verify the proposed optimization steps, POP experts and the code
developer at IMM implemented these steps in close collaboration as the
first proof-of-concept study done in POP. The optimizations include:

* The use of a memory allocation library optimized for multi-threading.

* Reordering the work distribution to threads to optimize for data locality
between neighboring cells. (see Figure below)

» Algorithmic optimizations in the convolution algorithm.

» Code restructuring to enable vectorization in parts of the
computation.

Initial work /data distribution over sockets (left) compared to the

optimized distribution (right).

-

>

a
D

.v"

0
0 01 02 03 04 05 06 07 08 09 1

02 03 04 05 06 07 08 09 1

Initial work /data distribution over sockets (left) compared to the optimized distribution (right).

After these optimization steps were implemented, a significant perfor-
mance improvement was achieved. For the hotspot of the application, the
convolution region, the speedup going from 1 to 16 sockets is about
15 instead of 6 as it was before the optimization. Overall, the runtime of
this region was improved by a factor of more than 10X. The proof-of-
concept verified that the planned optimizations indeed resulted in signifi-
cantly better code performance.

Performance Audit and Plan
Statistics

O
Programming

Models used

)0

* Based on data collected for /
161 POP Performance Audits |

a0

** MAGMA
Celery
TBB
GASPI
C++ threads
MATLAB PT
StarPU
GlobalArrays
Charm++
Fortran Coarray

dW“"’

Programming

xean
of Languages used

<
c
12
x

59

* Based on data collected for
161 POP Performance Audits

** TCL
Matlab
Perl
Octave

Oth e(‘* Java

15

*sunJ uononpoud siy 40) Juswanoidul
douewloiad |rIIURISQNS B WIJUO0D 0]
9|ge Sem Iawolsnd ayl pue % 0G Ajeau
JO asea.Joul aoueuuo;.lad B 9Sed]1S°9]
papiroid 8y} 1o} painseawl am ‘9pod |eald
ayy 01 paijdde suoneziwndo asay1 Yyum

SUOISIAIp 81| suolesado NdD
aAISUadXa JO U0I3ONPaJ 8yl Moj[e 1.y}
SUOI}IUIJEPaJ B|qBLIBA PUR JBJoWERIR]

salel ||eo y3siy
yamsuolizouny 1oys Aiaa jo uiuiju) e

:papn|oul suoneziwido ay|

‘Juawanoldwi souew.opiad

jueoiiusIs e 03 pes| suoneziwnido

9p0o9o pasodoud ayl 18y ‘palylian spiadxa
d0d 2y Apnis 1daou09o-jo-jooud e uj

-dn 19s sem panjosal 8q p|nod

sanss| 8say} moy uo uejd aosuewJoyiad
B pue palijuapl alem aouew.oylad apod
|eLI9S 3y] 0} pale|aJ SaNsS| |BJ9ASS lipne
aouewJoad 4Od B ulyim pashjeue
9J3M U2IYym Sainiea) mau Agq papusixe
MOU SeM 9p09 ay] "1sed 8y} Ul Swalshs
JdH U0 aouewliojiad pood umoys
Apealje pey pue UBILIO Ul UBJIIIM SI
9p02 8Y] "S8|91Y Pa||ed 8pod dlweuAp
pinjy e sdojansp uadals Jo Ajsianiun
ay1 Jo Suinndwo? d11IuaIdg pue
sanbiuyos] uoleINWIS 40} 83N31ISU| dY |

%06 Al1eau Aq

pasnpaJ 9pod solweuAp pinj 1oj awiuny

K101 $S929Ng Sa|a1y

*sopou 91ndwod 8109-9¢ Y318 Uo ‘@po?d |euIdlo ay} 03 paiedwod

‘dn paads sawi} 1noj pamoys aunnoigns pasiwido ay] ‘|dIA eIA
pa1edIuUNWWOd BIEP JO JuNOWe 8y} 89npal 0} wyiode ayy Suisiuedioal
pue ‘uoizeandwod jo paads ay} pajgnop yoiym Sy1g Jo asn panosdwi
‘uoiedluNWWod yim uoneindwod Suiddejsano papnjoul yarym ‘syuawl
-anoidwi jo a3uel e pajuswa|dwi pue payiauspl 3daduo? Jo J0old 8yl

sapou aindwoo jo Jaqunp

g L 9 S v € z T
1 1 1 1 ! 1 50
///\ 0T
aullnoigns [euIdLQ—— /. ST
aunnoigns dod 0T
o
0, R
[E9P! 40 %08 - g
[eapl— =
oe ©
S'€
ot
S
' s

"J9jsuely eiep |dIAN ulyim awiy jo adeiuadlad adle| e

yum pajdnod saunnol Sy19d/Sv1g Jo aouewioyiadiapun Ag pajiwi sem
Suijeos |a|eJed 8y} sa9oL1EW |[BWS JO UOIRDI|dI}NW 404 JRY} pauIWIalap
pey yJom Jaljdes ay] ‘suoiieoldipnw xuew xajdwoo jo souewloyiad
Suinosdwi uo passnooy 1daduo 4o Jooldd dOd & ‘ANV4 40 sjusuodwod
SnolIeA paskjeue Yolym ‘suejd 90UBWIO0LISd OM] PUB 1IPNY dOd B 1olY
*9ouew.oyJad [9)|esed anosdwl

djay pjnod 4od 1 mouy| 03 pajuem 4Qy ‘uoliesijgjjeded [dN Ym Uueiio
Ul USJlIM pue ‘S1SILBYD YdJeasal |eliiSnpul pue dlwapeoe Ag pasn |00l
|ny1emod Jo 13s e ‘23Iing Suljapol\ 4Qy paumoual s NS Jo 1ed st gNvg

a1ng Sulldapoy 4aV S.NDS 410} stuawanoidw| souewiolad Sig

14

A101S sS9299NS NVY

sphFluids Success Story

Insights into computer graphics code for fluids led to
a factor of 6 improvement

The computer animation department of the Stuttgart Media University,
in cooperation with the Visualisation Research Centre of the University
of Stuttgart, develops a Smoothed Particle Hydrodynamics solver to
simulate fluids for computer graphics applications called sphFluids.
The Code is written in C++ and was mainly developed as a cross-platform
desktop application, which is parallelized with OpenMP.

The sphFluids code supports the most common pressure as well as viscosity
models. Additionally, various approaches to model surface tension are
integrated. More details can be found in the paper ,,Evaluation of Surface
Tension Models for SPH-Based Fluid Animations Using a Benchmark Test®.

The sphFluids code underwent a POP performance audit, which identified
several issues related to the sequential
computational performance.

The good information exchange with the
POP experts during the study helped the
code developers to identify critical parts
in their application.

One of the issues found was code regions
with low instruction per cycle (IPC)
values. Several causes for this were
pointed out including:

» Definitions of variables in inner loops

e Unnecessary operations caused byindirections in the code design
¢ Non-inlined functions

e Cache misses, due to memory calls

Based on the audit, the code developers could optimize the identified parts
in the code by, e.g., inlining very short functions that were used frequently
or, regarding the cache misses, reorder the particle processing order. These
modifications improved the performance of the code by about 100 %.
Furthermore, they identified similar issues in other parts of the code and
reviewed the overall code design. The developers came to the decision

to completely rewrite the simulation code. Using the insights gained from
the POP-Experts, they could optimize the simulation performance further,
which led to an overall performance improvement up to 500 % - 600 %,
depending on the scenario and pressure model used.

zCFD Success Story

3x Speed Improvement for Zenotech’s zCFD Computational Fluid
Dynamics Solver

zCFD by Zenotech is a density based finite volume and Discontinuous
Galerkin (DG) computational fluid dynamics (CFD) solver for steady-

state or time-dependent flow simulation. It decomposes domains using
unstructured meshes. It is written in Python and C++ and parallelised with
OpenMP and MPI.

POP conducted a Performance Audit to identify potential areas for
improvement. This identified that the code was spending a surprisingly
large amount of time executing in serial and that one particular OpenMP
loop was suffering from load imbalance. POP also noted that the CPU
frequency was being lowered when the code was run on the maximum
number of threads (12 for the machine used in the Audit).

As a result, Zenotech made a number of changes to the code:
 Parallelising serial portions of code.
* Improving load balance.

* Removing OpenMP regions that were being created on multiple threads.

* Memory management modifications.
* Changing execution environment settings to boost CPU performance.

For the test case used in the study, these improvements meant the code
ran 1.65x faster on 12 threads. When Zenotech applied the modified code
to a test case that was 100x larger, they observed a 3x performance
improvement over the old code on 12 threads. The average cycle time
fell from 3,253ms to 1,185ms, which corresponds to going from 10.4
GFlop/s to 30.6 GFlop/s for a single Broadwell socket.

13

'$904n0sal |euoileIndwod Jo suoljedo||e Jad.ie| [euol]
-ippe azij11n Ajaaizonpoud 01 ssaulpeal p\\d3 1oddns
padjay s140das dOd 9S8yl ‘suonenwis Jad.e|
3unJoddns ‘sassasoad |dIN 096 103 Aoualoyye
|1911e1ed % G8 YHM ||am S3|edS 9pod |euly ay|

"uoINdaxXa Md3 Jo Jusuodwod

9|q131|85u B MOU pUE ‘@3NUIW SUO J3pun 0} sinoy

U3AaS J9A0 wouy awil Suipim pasnpai siyj|

‘048z ueds Aq Ajuo Sunnum |elIdS ym sassasolid

[1e Aq Ajpuauunouod unum ajiy paoejdal yaiym

pansind sem uoijedisanul 1daouod-jo-jooid 4Od V

‘suolze|nwis Ja3.e| pue 3uljeas uiiqgiyul 39susloq e

Sem 1 ‘(1xe1 parzewoy Jo gIAl0S punoJe) adie| Jou SI elep

JO JUnowe ay} y8noyly "sepou a1nduwiod aulu uo

ssao0.d |4\ Aq Suikiea awinl Sunum ayl jo weidoisiy

B SMOYS 2InS1} 8Y] "9WI} UOIINISXS dJBUILWOP 0}

UMO0J3 SuiARY S3INSaJ UOIIRINWIS [BULY SY} SUIILIM UYLIM

‘Buipuioddesip sem aouew.lo)lad |[elano ‘Ajareuniiojun

*s955920.d |dIN 0FZ Yim

SuoI1eINS1JUOD UOIINJBXd JadJe| 10} pasn ag p|nod pue

191SB} % (09 SEM UOISISA PAsIAaJ SIU] pue adue|equll
peo| paonpal

3y1 Ul SWI} SAISS9IXd pUB ‘sanss|
aouejequil peo| Jo A1a1ieA B paliuapl s8ssadold g+ Jo Jipne [ejiul 8y |
"00d3 e 4amndwod 0gDX AelD YIHOYY dy} uo
josejep [e1sA10 911z3dnm Jejod NeD e ylm paisal aq 0} ‘Juswdojanap ul [|13s
SEeM]ey] 9p09 8y} JO UOISISA pases|aiun ue Jo Jpne sdouewuopad 4Od e
pajlsanbal ployxQ Jo ANsianiun ayy wody s1adojanaq “|dIN Yim pasiia|jesed
9P0J UeJLIO4 SI]| "9UNS 0SSIA4ST Wnuenp ay3 ul panguisip apod 14@
99UdI0S S|ellalew e s (uonejodialul Jaiuuepy Suisn uouoyd-uoJidal) md3

p1oJ-01 panoidwi A)jiqejeas apod paoyxQ Jo Alsianiun

A101S sS999NS Md3

pug waojun

— ‘ Jauly e uisn

‘suonewwns

10193/ azjwido pue uoienojes Ales
-$929UUN pIOAe 0] SaulRNOJ pazijeloads |
s1adojanap ay} ataym ‘ueid souewuopad |

d0Od 1uanbasqns e Jo snooy ay3 awesaq

siy] -aseyd uonienwis uuemyda

"UB|d 99UBWLIONMS] dOd 9yl Ul PaewI}So Sem Se ‘sawl} g J19n0

40 Juswanosdw souewLIoyIad B S| YdIym SZ66°| O3 dWIIund ay3 paonpal
SIY] "S9402 J3Y10 ||e 01 340OM 9y} N0 Wey 0} ss8204d Jayoledsip pajedipap
e yum sitadojanap |NOS a2yl Agq paruswajdwi sem 3uiouejeq peoj dlweuAQq
"SWOIe G¥ 10} SHZ H Y001 J40M paduelequll JO UOIFOSS 8y} $8109 8Z| UQ

YOBq Ul SaUl| UOREIIUNLILIOD ‘D8UBYIXS ¥D04-88.)1BH 10} dOUBIEG PEO] JO BUIfBW) [BUISLIO

was" Spg :awi) 1o} ‘|dIN — pa! ‘uoneodydde — an|q

"goue|eq
poo8 104 OM] JO J01OB} B JO JuaWanoidwi ouew.oyiad pajoadxa ue yim
wyiio3[e urouejeq peoj ay3} aAcidwi 0} 8pew Sem UOIIBPUBWIWOIaI Y
‘uonesisaul Jayliny

paau Jou pIp pue poog 8g 0} pPunoj sem Aouaiolye UOIIBDIUNWWOD By |
“10M panqulsIp g 03 Suiliem a|pl Juads Sa109 awWlil 8y} JO 10Bj81Ie UR 8]
0] punoj sem ey} Ing A}1|Iqe|eds [euoljeindwod mo| 0S|e Sem 818yl HIom Jo
uol3nQLIsIp |enbaun 01 anp aoue|eqWI PRO| Y} SBM Pa1RJ0| dNSSI UlewW ay |
‘wa|qo.id ay3 asijs|jeted 01

dpou e ulym Aiowsw pateys pue |d|N Sasn uoiiesrdde ay] “uoijeoidde
9y JO 24n3ea) MU jueiodwi ue S| yoiym uoizeruswajduwl a3ueyoxa 3204
-93J1JBH MaU JIay] UO INO PaLLIBD 8I9M UB|d 90UBWIOLISd pue 1PNy dOd V
"S9|NJ3JOW JO A}IAI}OBAI PUB 8IN3ONJIS

3y} JoIpaid 01 suoie|nojed A10ayy jeuoijouny Ajisusp sasn yoiym uoijeoljdde
Ansiwayo jeuoineindwod e si 3| “spueayiaN ayy ul paseq Auedwod (NDS)
s|elale\ pue Auisiway? Joj alemjos woly apod diysseys ayl st 4Qy

uononpal
awijun.i omj jo 10joey o) Suipes| panoidwi uonesidde
Ansiwayo jeuoneindwos diysSeyy jo asuejeq peon

A101S ss929NnS 4QV

¢l

k-Wave Success Story

Open-source acoustic simulation code runtime halved

k-Wave is an open-source toolbox for time domain acoustic and ultrasound
simulations in complex and tissue-realistic media. Simulation functions are
based on the k-space pseudospectral method.

POP was requested by developers from Brno University of Technology to
audit the C++ version parallelised with MPI+OpenMP executing on the
Salomon supercomputer hosted by IT4Innovations in the Czech Republic.
A configuration of 32 dual-processor Intel Xeon compute nodes was used
running 64 MPI processes each with 12 OpenMP threads. The 3D domain
decomposition employed (4x4x4 process arrangement) was discovered
to suffer from poor performance with large amounts of both MPI and
OpenMP synchronization time arising from major load imbalance.

OMP . 8:3 -
Mast...ad:4

10

The figure shows an extract of the time-line visualization, showing the
three FFTW phases for one timestep of the first four MPI processes.
Originally (top with white background), the interior processes (ranks 1&2)
wait in MPI communication (red) for the much slower exterior processes
(ranks 0&3) where many more small and poorly-balanced parallel loops
have lots of OpenMP synchronization time (cyan). Although the exterior
MPI processes have fewer grid cells, the OpenMP-parallelized FFTs from
the FFTW library are much less efficient as they have a larger FFT base.

With this insight, the developers were quickly able to apply a periodic
domain with identical halo zones for each MPI rank (lower time-line with
lilac background), with the result that the execution is now more than
twice as fast. Both versions of the code are compared in the POP
performance audit.

BPMF Success Story

Data analysis code used to predict movie ratings
improved by around 40 %

Modelling complex data sets is a major problem today. An example here
is prediction of compound-on-target-activity in chemogenomics from

the ChEMBL data set with more than 2 Million compound records. The
compound-on-target-activity study at large scale is an extremely impor-
tant question in the process of discovering new drugs, which is currently
addressed in the EXCAPE project. The Bayesian Probabilisitc Matrix
Factorization (BPMF) is an efficient method to solve these kind of
problems. The BPMF code was analysed in a POP Audit and Performance
Plan service activity. While the BPMF code had already shown scalability
over several 100 nodes and also good efficiency on the node level,

POP experts could still identify points for improvement.

So a follow-up Proof of Concept study was performed together with

the customer. During the study several points were addressed. Besides
optimization of the linear algebra computations and improvement of the
selection process for optimized algorithms inside BMBF, the main and
most challenging issue was load balance. Due to the nature of the prob-
lems solved with BPMF, the datasets include very inhomogeneous data,
which result in load balance problems in the parallelization. BPMF there-
fore comes with a hybrid MPI+OpenMP parallelization. The still existing
load balance problem found was at the lower OpenMP level. Here a single
level OpenMP parallelization was used on the node level.

Before After

2ms 2w

The POP experts now implemented a second nesting level and also made
use of OpenMP tasks, which solved the load balance problem. Originally

the load balance of the problematic code part was 42.5% - after the
modifications 98.9 %. Finally, the improvements made in this POP Proof of
Concept were evaluated with three different datasets achieving speedups
between 1.6 and 1.8 that correspond to runtime reductions between
38 and 44 %.

11

