
Performance Optimisation
and Productivity

Performance Analysis and
Optimisation Services

at your Fingertips!

Why you should use
our Services for
your HPC code!

or

3

•	 Excellence in performance tools and tuning

•	 Excellence in programming models and practices

•	 Research and development background

•	 Proven commitment to real academic and industrial use cases

The POP Team

4

The Performance Optimisation and Productivity (POP) Centre of
Excellence in Computing Applications provides performance 	
optimisation and productivity services for academic AND
industrial code in all domains!

The services are free of charge to research organisations, SMEs, 	
ISVs and companies in Europe!

What are the main performance issues of your code?

?? Performance Audit Service

•	 Primary service	

•	 Small effort (typically 1 month)

•	 Customer receives report

Determine root causes of issues found and quantify approaches
to address them!

!! Parallel Application Performance Plan

•	 Follow-up on the audit service

•	 Longer effort (typically 1-3 months)

•	 Customer receives report

Perform experiments and code changes to show effect of
proposed optimizations

99 Proof-of-Concept

•	 Follow-up on the performance plan service

•	 6 months effort

•	 Customer receives software demonstrator

Services Provided

5

Customer Quotes

“The audit of the VAMPIRE code has
been extremely helpful in identifying the
hot spots and specific areas to focus on
performance improvements. Preliminary
results suggest this may give a factor of
2 performance improvement on modern
CPUs. I would highly recommend the
service for the speed and usefulness of
the audit.”

-- Richard Evans, VAMPIRE developer

“High performance computing is an
extremely interesting topic to our
application. The POP project has helped
Artelnics to speed-up Neural Designer
up to 5 times, when compared to the
serial version. And we can still improve a
lot more by implementing MPI processing
in computer clusters.”

 -- Dr Roberto Lopez, CEO Artelnics

“POP analysis elegantly reveals in detail
how our application’s algorithm is running
on HPC architectures. It is an extremely
useful optimisation tool! Our POP contact
was very knowledgeable and enthusiastic.
An excellent service!”

 -- Joseph Parker, GS2 Developer

6

POP Proof-of-Concept study leads to 10X performance
improvement for customer
The Institute of Physical Metallurgy and Metal Physics of RWTH Aachen
University (IMM) develops a code for the simulation of microstructure 	
evolution in polycrystalline materials, called GraGLeS2D. The OpenMP 	
parallel code is designed to run on large SMP machines in the RWTH 	
compute cluster with 16-sockets and up to 2 TB of memory. After a 	
POP performance audit of the code, several performance issues were 	
detected and a performance plan on how these issues could be resolved
was set up.

To verify the proposed optimization steps, POP experts and the code 	
developer at IMM implemented these steps in close collaboration as the
first proof-of-concept study done in POP. The optimizations include:

•	 The use of a memory allocation library optimized for multi-threading.

•	 Reordering the work distribution to threads to optimize for data locality
between neighboring cells. (see Figure below)

•	 Algorithmic optimizations in the convolution algorithm.

•	 Code restructuring to enable vectorization in parts of the 	
computation.

Initial work/data distribution over sockets (left) compared to the 	
optimized distribution (right).

After these optimization steps were implemented, a significant perfor-
mance improvement was achieved. For the hotspot of the application, the
convolution region, the speedup going from 1 to 16 sockets is about
15 instead of 6 as it was before the optimization. Overall, the runtime of 	
this region was improved by a factor of more than 10X. The proof-of-
concept verified that the planned optimizations indeed resulted in signifi-
cantly better code performance.

Initial work/data distribution over sockets (left) compared to the optimized distribution (right).

GraGLeS2D Success Story

7

Initial work/data distribution over sockets (left) compared to the optimized distribution (right).

Ateles Success Story

Runtime for fluid dynamics code reduced
by nearly 50 %
The Institute for Simulation Techniques
and Scientific Computing of the 	
University of Siegen develops a fluid
dynamic code called Ateles. The code 	
is written in Fortran and had already
shown good performance on HPC
systems in the past. The code was now
extended by new features which were
analysed within a POP performance
audit. Several issues related to the serial
code performance were identified and a
performance plan on how these issues
could be resolved was set up.

In a proof-of-concept study the POP
experts verified, that the proposed code
optimizations lead to a significant 	
performance improvement.

The optimizations included:

•	 Inlining of very short functionswith
high call rates

•	 Parameter and variable redefinitions
that allow the reduction of expensive
CPU operations like divisions

With these optimizations applied to the
real code, we measured for the provided
test case a performance increase of
nearly 50 % and the customer was able
to confirm a substantial performance
improvement for his production runs.

8

sphFluids Success Story

Insights into computer graphics code for fluids led to
a factor of 6 improvement
The computer animation department of the Stuttgart Media University, 	
in cooperation with the Visualisation Research Centre of the University 	
of Stuttgart, develops a Smoothed Particle Hydrodynamics solver to 	
simulate fluids for computer graphics applications called sphFluids. 	
The Code is written in C++ and was mainly developed as a cross-platform
desktop application, which is parallelized with OpenMP.

The sphFluids code supports the most common pressure as well as viscosity
models. Additionally, various approaches to model surface tension are
integrated. More details can be found in the paper „Evaluation of Surface
Tension Models for SPH-Based Fluid Animations Using a Benchmark Test“.

The sphFluids code underwent a POP performance audit, which identified
several issues related to the sequential
computational performance. 	
The good information exchange with the
POP experts during the study helped the
code developers to identify critical parts
in their application.

One of the issues found was code regions
with low instruction per cycle (IPC) 	
values. Several causes for this were 	
pointed out including:

•	 Definitions of variables in inner loops

•	 Unnecessary operations caused byindirections in the code design

•	 Non-inlined functions

•	 Cache misses, due to memory calls

Based on the audit, the code developers could optimize the identified parts
in the code by, e.g., inlining very short functions that were used frequently
or, regarding the cache misses, reorder the particle processing order. These
modifications improved the performance of the code by about 100 %.
Furthermore, they identified similar issues in other parts of the code and
reviewed the overall code design. The developers came to the decision
to completely rewrite the simulation code. Using the insights gained from
the POP-Experts, they could optimize the simulation performance further,
which led to an overall performance improvement up to 500 % - 600 %,
depending on the scenario and pressure model used.

9

EPW Success Story

University of Oxford code scalability improved 10-fold
EPW (Electron-Phonon using Wannier interpolation) is a materials science
DFT code distributed in the Quantum ESPRESSO suite. It is Fortran code
parallelised with MPI. Developers from the University of Oxford requested
a POP performance audit of an unreleased version of the code that was
still in development, to be tested with a GaN polar wurtzite crystal dataset
on the ARCHER Cray XC30 computer at EPCC.

The initial audit of 48 processes identified a variety of load imbalance
issues, and excessive time in the
ephwann simulation phase. This
became the focus of a subsequent POP
performance plan, where the developers
specialized routines to avoid unneces-
sary calculation and optimize vector
summations.

Using a finer 	
uniform grid
reduced load 	

imbalance and this revised version was 60 % faster
and could be used for larger execution configurations
with 240 MPI processes.

Unfortunately, overall performance was disappointing,
with writing the final simulation results having grown
to dominate execution time. The figure shows a 	
histogram of the writing time varying by MPI process 	
on nine compute nodes. Although the amount of 	
data is not large (around 50MB of formatted text), it was
a bottleneck inhibiting scaling and larger simulations. 	
A POP proof-of-concept investigation was pursued
which replaced file writing concurrently by all 	
processes with serial writing only by rank zero. 	
This reduced writing time from over seven
hours to under one minute, and now a negligible
component of EPW execution.

The final code scales well with 85 % parallel
efficiency for 960 MPI processes, supporting
larger simulations. These POP reports helped 	
support EPW readiness to productively utilize addi-
tional larger allocations of computational resources.

10

Open-source acoustic simulation code runtime halved
k-Wave is an open-source toolbox for time domain acoustic and ultrasound
simulations in complex and tissue-realistic media. Simulation functions are
based on the k-space pseudospectral method.

POP was requested by developers from Brno University of Technology to
audit the C++ version parallelised with MPI+OpenMP executing on the
Salomon supercomputer hosted by IT4Innovations in the Czech Republic.
A configuration of 32 dual-processor Intel Xeon compute nodes was used
running 64 MPI processes each with 12 OpenMP threads. The 3D domain
decomposition employed (4x4x4 process arrangement) was discovered
to suffer from poor performance with large amounts of both MPI and
OpenMP synchronization time arising from major load imbalance.

The figure shows an extract of the time-line visualization, showing the
three FFTW phases for one timestep of the first four MPI processes. 	
Originally (top with white background), the interior processes (ranks 1&2)
wait in MPI communication (red) for the much slower exterior processes
(ranks 0&3) where many more small and poorly-balanced parallel loops
have lots of OpenMP synchronization time (cyan). Although the exterior
MPI processes have fewer grid cells, the OpenMP-parallelized FFTs from
the FFTW library are much less efficient as they have a larger FFT base.

With this insight, the developers were quickly able to apply a periodic 	
domain with identical halo zones for each MPI rank (lower time-line with
lilac background), with the result that the execution is now more than
twice as fast. Both versions of the code are compared in the POP 	
performance audit.

k-Wave Success Story

11

BPMF Success Story

Data analysis code used to predict movie ratings
improved by around 40 %
Modelling complex data sets is a major problem today. An example here
is prediction of compound-on-target-activity in chemogenomics from
the ChEMBL data set with more than 2 Million compound records. The
compound-on-target-activity study at large scale is an extremely impor-
tant question in the process of discovering new drugs, which is currently
addressed in the ExCAPE project. The Bayesian Probabilisitc Matrix 	
Factorization (BPMF) is an efficient method to solve these kind of 	
problems. The BPMF code was analysed in a POP Audit and Performance 	
Plan service activity. While the BPMF code had already shown scalability
over several 100 nodes and also good efficiency on the node level, 	
POP experts could still identify points for improvement.

So a follow-up Proof of Concept study was performed together with 	
the customer. During the study several points were addressed. Besides 	
optimization of the linear algebra computations and improvement of the
selection process for optimized algorithms inside BMBF, the main and
most challenging issue was load balance. Due to the nature of the prob-
lems solved with BPMF, the datasets include very inhomogeneous data,
which result in load balance problems in the parallelization. BPMF there-
fore comes with a hybrid MPI+OpenMP parallelization. The still existing
load balance problem found was at the lower OpenMP level. Here a single
level OpenMP parallelization was used on the node level.

The POP experts now implemented a second nesting level and also made
use of OpenMP tasks, which solved the load balance problem. Originally
the load balance of the problematic code part was 42.5 % – after the
modifications 98.9 %. Finally, the improvements made in this POP Proof of
Concept were evaluated with three different datasets achieving speedups
between 1.6 and 1.8 that correspond to runtime reductions between
38 and 44 %.

12

ADF Success Story

Load balance of flagship computational chemistry
application improved leading to factor of two runtime
reduction
ADF is the flagship code from Software for Chemistry and Materials
(SCM) company based in The Netherlands. It is a computational chemistry
application which uses density functional theory calculations to predict the
structure and reactivity of molecules.

A POP Audit and Performance Plan were carried out on their new Hartree-	
Fock exchange implementation which is an important new feature of the
application. The application uses MPI and shared memory within a node 	
to parallelise the problem.

The main issue located was the load imbalance due to unequal distribution
of work, there was also low computational scalability but that was found to
be an artefact of the time cores spent idle waiting to be distributed work.
The communication efficiency was found to be good and did not need
further investigation.

A recommendation was made to improve the load balancing algorithm
with an expected performance improvement of a factor of two for good
balance.

On 128 cores the section of imbalanced work took 4.24s for 45 atoms.
Dynamic load balancing was implemented by the SCM developers with a
dedicated dispatcher process to farm out the work to all other cores. This
reduced the runtime to 1.992s which is a performance improvement of
over 2 times, as was estimated in the POP Performance Plan.

Original timeline of load balance for Hartree-Fock exchange, communication lines in black

13

zCFD Success Story

3x Speed Improvement for Zenotech’s zCFD Computational Fluid
Dynamics Solver

zCFD by Zenotech is a density based finite volume and Discontinuous
Galerkin (DG) computational fluid dynamics (CFD) solver for steady-	
state or time-dependent flow simulation. It decomposes domains using
unstructured meshes. It is written in Python and C++ and parallelised with
OpenMP and MPI.

POP conducted a Performance Audit to identify potential areas for 	
improvement. This identified that the code was spending a surprisingly
large amount of time executing in serial and that one particular OpenMP
loop was suffering from load imbalance. POP also noted that the CPU
frequency was being lowered when the code was run on the maximum
number of threads (12 for the machine used in the Audit).

As a result, Zenotech made a number of changes to the code:

•	 Parallelising serial portions of code.

•	 Improving load balance.

•	 Removing OpenMP regions that were being created on multiple threads.

•	 Memory management modifications.

•	 Changing execution environment settings to boost CPU performance.

For the test case used in the study, these improvements meant the code
ran 1.65x faster on 12 threads. When Zenotech applied the modified code
to a test case that was 100x larger, they observed a 3x performance
improvement over the old code on 12 threads. The average cycle time
fell from 3,253ms to 1,185ms, which corresponds to going from 10.4
GFlop/s to 30.6 GFlop/s for a single Broadwell socket.

14

BAND Success Story

Big Performance Improvements for SCM’s ADF Modeling Suite

BAND is part of SCM’s renowned ADF Modeling Suite, a set of powerful
tools used by academic and industrial research chemists, and written in
Fortran with MPI parallelisation. ADF wanted to know if POP could help
improve parallel performance.

After a POP Audit and two Performance Plans, which analysed various
components of BAND, a POP Proof of Concept focussed on improving
performance of complex matrix multiplications. The earlier work had 	
determined that for multiplication of small matrices the parallel scaling
was limited by underperformance of BLAS/PBLAS routines coupled with 	
a large percentage of time within MPI data transfer.

The Proof of Concept identified and implemented a range of improve-
ments, which included overlapping computation with communication,
improved use of BLAS which doubled the speed of computation, and
reorganising the algorithm to reduce the amount of data communicated 	
via MPI. The optimised subroutine showed four times speed up, 	
compared to the original code, on eight 36-core compute nodes.

15

Performance Audit and Plan
Statistics

3

Fortran

C/C++

Other**

59
47

31

4

5
4

6

Python

2

MPI

Other**

OpenM
P

Accelerator

60
12

56

11

8

1
3

1

4 + 4

1

3

Fortran

C/C++

Other**

59
47

31

4

5
4

6

Python

2

MPI

Other**

OpenM
P

Accelerator

60
12

56

11

8

1
3

1

4 + 4

1

Programming
Models used

Programming
Languages used

* 	Based on data collected for
	 161 POP Performance Audits

**	 TCL
	 Matlab
 	 Perl
	 Octave
	 Java

* 	Based on data collected for
	 161 POP Performance Audits

**	 MAGMA
	 Celery
 	 TBB
 	 GASPI
 	 C++ threads
 	 MATLAB PT
 	 StarPU
 	 GlobalArrays
 	 Charm++
 	 Fortran Coarray

16

Performance Audit and Plan
Statistics

Application Sectors

Customer Types

* 	Based on data collected for 161 POP Performance Audits

17

Customer Satisfaction

Performance Audits
(73 customers)

Performance Plans
(11 customers)

Proof-of-Concepts
(8 customers)

•	 Over 90 % very satisfied or satisfied with service

•	 About half of the customers signed-up for a
follow-up service

•	 About 90 % very satisfied or satisfied with service

•	 All customers thought suggestions were precise
and clear and 70 % plan to implement the 	
suggested code modifications

•	 About 2/3 plan to do use the POP services again

•	 All customers very satisfied or satisfied with this
service

•	 Over 80 % plan to implement further code modifi-
cations or complete the work of the POP experts

18

ROI Examples

Application Savings after POP Proof-of-Concept

•	 POP PoC resulted in 72 % faster-time-to-solution

•	 Production runs on ARCHER (UK national academic supercomputer)

•	 Improved code saves €15.58 per run

•	 Yearly savings of around € 56,000 (from monthly usage data)

Application Savings after POP Performance Plan

•	 Cost for customer implementing POP recommendations: € 2,000

•	 Achieved improvement of 62 %

•	 € 20,000 yearly operating cost

•	 Resulted in yearly saving of €12,400 in compute costs  ROI of 620 %

Imprint

Editor:	 Bernd Mohr 	
	 (Forschungszentrum Jülich GmbH)	

Graphic Design:	 Nadine Daivandy 	
	 (Forschungszentrum Jülich GmbH)

Photos:	 	 POP project (page 2)

	 	 Graphics provided by customers, 	
	 	 used with permission

Copyright:	 	 POP Project

	 	 March 2018

Performance Optimisation
and Productivity

The POP Centre of Excellence is funded from October 2015 to 	
March 2018.

A Centre of Excellence
in Computing Applications

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No 676553.

Contact
Twitter:	 @POP_HPC

LinkedIn:	 POP group

You Tube:	 POP HPC

Web:	 https://www.pop-coe.eu

Email:	 pop@bsc.es

For POP webinars and newsletter 	
subscription see website

