

The human heart seen by the eyes of a computer scientist

Marta Garcia-Gasulla, Alfonso Santiago, Guillaume Houzeaux, Beatriz Eguzkitza and Filippo Mantovani (BSC)

EU H2020 Centre of Excellence (CoE)

1 December 2018 – 30 November 2021

Grant Agreement No 824080

28th November 2019

Advances in Computational Biology 2019 - Marta Garcia-Gasulla

Alya

HPCM

call Timste()

time: do while (kfl_gotim == 1)

reset: do
 call Begste()

block: do while (kfl_goblk == 1)

tock. do mille (kil_goolk an 1)

zone_coupling: do while (kfl_gozon == 1)

call Begzon()

coupling_modules: do while (kfl_gocou == 1)
 call Doiter()
 call Concou()
end do coupling_modules

The simulation

The simulation

• The code:

- > Alya: Is a simulation code for high performance computational mechanics
 - Unstructured Meshes
 - Parallelized using MPI and OpenMP
 - Developed at BSC
- The geometry: Two meshes
 - Tissue of the heart, 500k elements
 - Blood within the cavities, 400k elements

Alfonso Santiago et al. **Fully coupled fluid-electro-mechanical model of the human heart for supercomputers**. International journal for numerical methods in biomedical engineering (2018), 34(12), e3140.

28th November 2019

First view

• Check structure

\geq Find "interesting part" \rightarrow Focus of Analysis (FoA)

➢Usually iterative, without initialization and finish

Where is the heart?

 \leftarrow Time \rightarrow

28th November 2019

Measuring the heart rate v_{φ}

- One of the first sanity checks
 - Cycles per us

0 nz	value	0	96,485,982,842 r

Cycles per us

Dhaco

The patient has arrhythmia \mathcal{V}

• Why low value of cycles per us?

Digging in the code we find a large memory allocation and initialization that was not necessary

Cycles per us
With allocation
and initializationImage: Cycles per us
With allocation
and NO initializationCycles per us
With allocation
and NO initializationImage: Cycles per us
Cycles per us
Cycles

28th November 2019

Efficiency metrics of the heart

28th November 2019

Supercomputing

ntro Nacional de Supercomputación

Center

• What I see:

- Very low parallel efficiency
 - Only 33% of the time is used to do compute
- High Load imbalance
 - 40% of time is "lost" waiting for more loaded processes
- Serialization Problem

The diagnostic...

- When one physic is being solved the other must wait
- Common issue in Fluid-Structure-Interaction (FSI) problems
- How can we improve this?
 - Run both codes on the same cores
 - > Assume MPI is not consuming cpu time

> Use DLB_node_barrier()

More details...

Juan Carlos Cajas et al. Fluid-Structure Interaction Based on HPC Multicode Coupling SIAM Journal on Scientific Computing 40 (6), C677-C703

Efficiency metrics: Tissue

28th November 2019

Supercomputing

Centro Nacional de Supercomputación

Center

• What I see:

Advances in Computational Biology 2019 - Marta Garcia-Gasulla

➢Load Balance problem

The diagnostic for the tissue

Marta Garcia-Gasulla et al. Runtime mechanisms to survive new HPC architectures: A use case in human respiratory simulations. The International Journal of High Performance Computing Applications (2019):

28th November 2019

Advances in Computational Biology 2019 - Marta Garcia-Gasulla

Efficiency metrics: Blood

• What I see:

- ➢ Very low transfer efficiency
 - Almost 50% of time in communication

The diagnosis for the blood

MPI calls in 800ms

	MPI_Barrier	MPI_Allreduce	MPI_Comm_rank	MPI_Comm_size	MPI_Sendrecv
Total	2,400	675,648	864	864	1,974,452
Average	25	7,038	9	9	20,783.71
Maximum	25	7,038	9	9	42,657
Minimum	25	7,038	9	9	6,094
StDev	0	0	0	0	7,384.27
Avg/Max	1	1	1	1	0,49

- High number of collectives
 - Synchronization problem
 - \succ Depending on size \rightarrow BW
- Very high number of point to point communications
 - ➢ 648 calls in 76 us
 - ➢ High imbalance in number of calls
 - Produces imbalance at collectives
- How can we improve this?
 - Can we reduce the number of point 2 point communications?
 - Can we partition with less neighbors?

Who to blame? Bandwith or Latency?

Original

• Latency = 0

Ideal

28th November 2019

Lessons learned

- Interdisciplinary work
 - \succ Enriches both sides
 - \blacktriangleright Advances both sides
 - ➢ Is FUN!!
- Performance analysis
 - > MUST be done
 - Is useful to...
 - Improve performance
 - Find bugs
 - Find configuration problems...
 - ➢ Is FUN!!

Do you want more?

- 🕜 is a Center of Excellence for Performance Optimisation and Productivity
- We do a performance analysis of your code/simulation/experiment...

- Who can ask for it?
 - Any developer or user of a code from EU
 - From academic, research or commercial organisations
- How?
 - \succ Fill the form in: https://pop-coe.eu/request-service-form
- Or e-mail me: marta.garcia@bsc.es

Performance Optimisation and Productivity A Centre of Excellence in HPC

Contact: https://www.pop-coe.eu mailto:pop@bsc.es ©@POP_HPC

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080.

