
EU H2020 Centre of Excellence (CoE) 1 December 2018 – 30 November 2021

Grant Agreement No 824080

An Introduction to
the POP Methodology

1

Jonathan Boyle, Numerical Algorithms Group

Introduction to the POP CoE

2

The POP Centre of Excellence
• POP is a CoE in Performance Optimisation and Productivity

• Promotes best practices in parallel programming

• POP provides FREE services
• for (EU) industrial and academic, (parallel) codes and users
• across all application areas, platforms, scales

• giving users
• a precise understanding of application and system behaviour
• suggestions & support on how to refactor code in the most productive way

• often leading to
• faster code / bigger jobs / better science
• a significant Return on Investment
• an edge against the competition

Return on Investment Examples

Application Savings after POP Proof-of-Concept

• POP PoC resulted in 72% faster-time-to-solution
• Production runs on ARCHER (UK national academic supercomputer)
• Improved code saves €15.58 per run
• Yearly savings of around €56,000 (from monthly usage data)

Application Savings after POP Performance Assessment
• Cost for customer implementing POP recommendations: €2,000
• Achieved improvement of 62%
• €20,000 yearly operating cost
• Resulted in yearly saving of €12,400 in compute costs ð ROI of 620%

• Parallel Application Performance Assessment
• Primary service
• Identifies performance issues of customer code
• If needed, identifies the root causes of the issues found and

qualifies and quantifies approaches to address them (recommendations)
• 1-3 months effort

• Proof-of-Concept
• Follow-up service
• Experiments and mock-up tests for customer codes
• Kernel extraction, parallelisation, mini-app experiments to show

effect of proposed optimisations
• 3-6 months effort

Note: Effort shared between our experts and customers!

FREE Services provided by the CoE

Module 1
Introduction to Parallel Performance Analysis

6

Why it’s difficult to understand poor parallel performance
• The limitations of traditional speedup and efficiency plots
• What trace data is
• Challenges of interpreting trace data
• The philosophy behind the POP metrics

A brief introduction to profiling and tracing

7

What you’ll learn

Q: Are we making good use of parallel hardware?
• To speed up computation we run on multiple cores
• Modern processors are multicore e.g. desktops, mobile devices
• Computers may contain multiple processors e.g. supercomputers

• Huge speedup is possible on large HPC machines
• Single processor speedup is often important too

Q: Is our speedup close to the maximum possible?
• Ideal speedup = number of CPU cores used

• Relative to 1 core
• Anything less is a waste of resources

• e.g. hardware, electricity, money

Q: How do we improve low speedup?

8

The importance of performance

• Plot speedup or efficiency to measure relative performance, i.e.

• Step 1: measure run time TN for some range of N
• N is usually number of compute nodes on HPC hardware

• Or perhaps number of CPU cores for thread based parallelism

• Step 2: plot scaling or efficiency

Speedup =
Treference

TN

Ef.iciency=
Treference
N×TN

9

Traditional parallel performance

• Reference case is a 68 core compute node
• Note: speedup and efficiency is always 1 for the reference case

10

Traditional scaling & efficiency plots

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8

Ef
fic

ie
nc

y

Number of compute nodes

• They tell us nothing about the causes of poor performance
• e.g. load imbalance, idle cores, parallelism overheads, etc

• For a parallel reference case they tell us nothing about absolute performance
• Scaling and efficiency for the reference case is always 1
• And running a single core case may be impractical

• So we add:
• Step 3: generate trace data to profile the performance
• Step 4: interpret the trace data

11

The problem with these metrics

• Profiling refers to the monitoring of a code’s behaviour as it executes
• To capture the behaviour of the application under production conditions
• To understand and quantify the efficiency of resource usage
• To identify inefficiencies and where improvements can be made

• Profiling helps build an overall picture of the application e.g.
• Where is the time spent?
• Is performance consistent?
• Where are the underperforming regions?
• Does parallel code make good use of all cores?

• The profiling results can be used to:
• Guide the code refactoring effort
• Provide a baseline from which improvements can be measured

Performance Profiling

Instrumentation
Modification of the

executable to record
events related to

performance

Measurement
Data is collected as the
instrumented code is

executed

Analysis and
Presentation

All the data files are
loaded into memory
and presented in one

or more analysis
reports

Optimisation
Formulate an optimisation

strategy
Implement the
optimisations

13

The Profiling-Optimisation Cycle

Start

Finish

• Tracing tools record data at specific points during program execution
• i.e. a timestamp plus various information about what’s going on at that point

• Tracing tools will vary in what they record

• For parallel performance we typically record (at least) all parallel events
• Usually also hardware counter data

• e.g. number of processor cycles and instructions

• Trace files usually contain a huge amount of data
• There are often many parallel events
• They may also collect data for every function call, perhaps for every loop

• Trace visualisation tools display trace data, e.g.
1. Timelines showing selected events per core - often too detailed to interpret
2. Metrics - usually an overwhelming amount of data

Understanding trace data is usually a big challenge
14

What is trace data?

There are many possible causes of poor performance e.g.
• Imbalance in the amount of computation per core
• Dependencies between computation on different cores

• e.g. MPI synchronisation issues leading to idle cores

• Additional work arising from the parallelism e.g.
• Useful work which can’t be parallelised & must be replicated over the cores
• Parallelism overheads e.g. time in MPI data transfer

• Reduction in processor instruction throughput (IPC) or frequency
• e.g. Memory issues

• Such as NUMA (non-uniform memory access), memory cache use, etc.

Qs: Which issues are impacting performance? Which issues to fix first?
15

Why analysing trace data is hard (1)

• There are typically a huge number of (parallel) events during execution
• The trace data is often too complex to view as a single timeline

• Some trace visualisation tools can post-process trace data to calculate
a range of metrics for profiling
• But the number of metrics and amount of data is often

overwhelming

Q: How do we know where to start with the trace data? What are we
looking for?

16

Why analysing trace data is hard (2)

The idea is simple but extremely powerful
• Devise a simple set of performance metrics using values easily

obtained from the trace data i.e.
• Absolute efficiency metrics
• Scaling metrics

• Low values indicate specific causes of poor parallel performance

We use these metrics to understand
1. What are the causes of poor performance
2. What to look for in the trace data

17

A solution - The POP metrics

Com
putation Scalability

Parallel Efficiency
Com

m
unication

Efficiency

18

Trace analysis - the journey

Identify
Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balance

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Module 2
Introduction to Parallel Performance Analysis using the POP metrics

19

Com
putation Scalability

Parallel Efficiency
Com

m
unication

Efficiency

20

The journey

Identify
Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balance

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Com
putation Scalability

Parallel Efficiency
Com

m
unication

Efficiency

21

The journey

Identify
Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Identify
Structure

• Objectives:
• Understand general structure
• Identify initialization/finalization phases
• Detect iterative pattern
• Understand granularity

• Different levels of ‘complexity’ à Different levels of knowledge

• The following examples show trace data collected using BSC’s tools
• Extrae to collect trace data
• Paraver to visualize it

22

Identify structure

• Usually use “MPI calls” view or “Useful Duration” views

23

Identify timeline structure

Iterative phase
Initialization

• Clear iterative
pattern

• With an initialization
phase

• All iterations are
similar

§ We can select a
few to analyze

• Not always easy

24

Identify structure

6 iterations
Finalization

• There are 6 iterations and one
finalization phase
• Iterations are not regular along

time
§ Different patterns of load balance
§ Different patterns of duration

• Not always easy

25

Identify structure

• It is not easy to detect an
iterative structure

• No global synchronizations

• Zooming in we detect that
synchronizations only happen at node
level

• Not possible to determine iterations

Com
putation Scalability

Parallel Efficiency
Com

m
unication

Efficiency

26

The journey

Identify
Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Select Focus
of Analysis

(FoA)

• Objective: Select the region we want to analyze
• No one correct answer, depends on the context of the analysis
• For the same trace we may select two different FoAs to perform two different

studies with two different objectives

27

Select Focus of Analysis (FoA)

Com
putation Scalability

Parallel Efficiency
Com

m
unication

Efficiency

28

The journey

Identify
Structure

Select Focus
of Analysis

(FoA)

Efficiency
Metrics

Load balancing

Conclusions
and

suggestions

Serialization

Transfer

Instruction
scalability

IPC
scalability

Frequency
scalability

Detailed
Analysis

Efficiency
Metrics

Global
Efficiency

Parallel
Efficiency

Load
Balance

Communication
Efficiency

Serialization

Transfer

29

POP MPI ‘additive’ Efficiency Metrics

Computation
Scalability

IPC
Scalability

Instruction
Scalability

Frequency
Scalability

X

X

+
+

• Hierarchical model
• Two kind of metrics:

• Efficiency metrics
• Absolute metrics
• 1 to 100% scale
• Additive

• Scalability metrics
• Relative to a base case
• 100% for the base case

• A simple set of metrics
• Easily calculated from trace data
• Each metric points at a specific cause or causes of poor parallel

performance
• A hierarchy
• Top level metrics give a broad overview
• Low level metrics allow us to drill down into the details

30

The idea

• The state of a process is
simplified to two values
• Useful == Computing
• Not useful == Otherwise

31

Some semantics first
Computing

Barrier

Receive
Send

Reduce

C1
1

C2
1 C2

2

C1
2

C3
1

C4
1 C4

2

C3
2

C1
3

C2
3

C3
3

C4
3

Computing
Communication

p1
p2
p3
p4

T

P

• T = Elapsed time
• P = Number of processes
• ci = Compute time of

process i
§ 𝑐! = ∑"#$% 𝑐!

"

• C = Total compute time
§ 𝐶 = ∑!#$& 𝑐!

• There are some obvious first questions for any form of parallelism
1. How good is the parallelism?
2. Is the total time in useful computation constant?

• ‘Useful’ means computation outside parallel libraries i.e. executing your code
• These questions apply to any form of parallelism, not just MPI

• Using a trace visualisation tool we can usually quickly find:
1. Sum of all time in useful computation
2. Maximum time in useful computation measured over the cores

• Often we can also find:
3. Total number of processor useful cycles
4. Total number of processor useful instructions

What can we calculate using this data?
32

What do we want to know?

• Ideally we split total useful computation evenly over all cores, with no
overheads from parallelism i.e.

‘Ideal runtime’ = sum of time in useful computation / Nc

= average useful computation
Nc = number of cores

• Hence define: Parallel Efficiency = Ideal runtime / Runtime

= Average useful computation / Runtime

• Note: this measures an absolute efficiency

33

How good is the parallelism?

• Ideally the sum of time in useful computation remains constant as we
increase the number of cores used
• But in practice total useful computation often increases

• Define:

Computation scaling =

Reference total useful computation / Total useful computation

• Reference is typically the smallest time in useful computation

34

Is useful computation time constant?

35

Child-metrics for comp. scaling
• Define:

Useful IPC = Useful instructions / Useful cycles

Useful Frequency = Useful cycles / Sum of time in useful computation

• Note: Time = Instructions / (IPC x Frequency)

• We can split Computation Scaling into three scaling metrics
1. Useful IPC Scaling
2. Useful Instruction Scaling
3. Useful Frequency Scaling

• Multiplying these three scaling gives us the Computation Scaling

• We can combine Parallel Efficiency and Computation Scaling by
multiplying

Global efficiency = Parallel Efficiency x Computation Scaling

• This is the same as the Parallel Efficiency that would be obtained if
the time in useful computation had stayed the same as the reference
case

36

How good is performance overall?

• We already have a nice set of useful metrics
• They can be used with MPI, OpenMP, Pthreads, etc.

• There is a hierarchy
• Global Efficiency splits into Parallel Efficiency & Computation scaling
• Computation scaling splits into Instruction, IPC and Frequency Scaling

• The metrics give us insight into
• Overall performance
• Is the problem in the parallelism or the computation?
• Is poor Computation Scaling due to:

• Increasing useful instructions
• Reducing IPC
• Reducing frequency

• We can use these for benchmarking
• e.g. to compare performance before and after code modifications

37

A hierarchy of metrics

• We immediately see Parallel Efficiency is very low on > 1 compute node
• Around 2/3 of run time on 8 nodes is overhead from poor parallelism

• Computation Scaling is also poor
• Time in useful computation on 8 nodes > twice that on 1 node
• Caused mostly by poor IPC scaling

• Instruction & Frequency Scaling are good

38

Example of using the POP metrics
#nodes 1 2 4 8
Global Efficiency 0.95 0.38 0.24 0.14
↳ Parallel Efficiency 0.95 0.53 0.42 0.34
↳ Computation Scaling 1.00 0.73 0.57 0.41
↳	IPC Scaling 1.00 0.85 0.67 0.50
↳	Instruction Scaling 1.00 0.94 0.95 0.94
↳ Frequency Scaling 1.00 0.91 0.89 0.89

39

Example 2
Number of nodes 1 2 4 8
Global Efficiency 0.86 0.70 0.50 0.34
↳ Parallel Efficiency 0.86 0.72 0.60 0.47
↳ Computation Scaling 1.00 0.96 0.84 0.74
↳	IPC Scaling 1.00 0.97 0.94 0.98
↳	Instruction Scaling 1.00 0.96 0.88 0.76
↳ Frequency Scaling 1.00 1.03 1.02 0.99

• The main problem here is the parallelism
• 50% of the run time is due to parallelism inefficiencies
• Our next question: what is causing this?

• Computation Scaling is low
• The instruction count is increasing!

• IPC and Frequency Scaling are good

• Poor Parallel Efficiency yet again!
• This needs further investigation

• And Computation Scaling contributes to 50% of run time on 24 cores
• Main contribution is reducing IPC
• But reducing processor frequency also plays a part

40

Example 3
Number of CPU cores 1 4 8 12 16 20 24
Global Efficiency 0.99 0.76 0.53 0.44 0.38 0.36 0.30
↳ Parallel Efficiency 0.99 0.85 0.76 0.73 0.68 0.65 0.58
↳ Computation Scaling 1.00 0.89 0.69 0.60 0.56 0.55 0.51
↳	IPC Scaling 1.00 0.92 0.78 0.74 0.70 0.69 0.65
↳	Instruction Scaling 1.00 1.00 1.00 1.00 1.00 0.99 0.99
↳ Frequency Scaling 1.00 0.97 0.89 0.82 0.81 0.80 0.78

Module 3
POP metrics for MPI applications

41

• Let’s now extend these metrics for specific parallel methodologies
• i.e. split Parallel Efficiency into suitable child metrics

• Ideally one child metric per source of inefficiency

• For MPI - we typically want to understand costs due to
• Load imbalance of useful computation
• Time inside MPI

• Is it due to data transfer?
• Or due to time waiting in MPI caused by dependencies (i.e. synchronisation points)?

• How do we extend the hierarchy further?

42

Q: Causes of low parallel efficiency?

• Let’s revisit POP’s Parallel Efficiency
• This measures the efficiency of the parallelisation

• We measured useful computation and runtime on n cores
• comp is useful computation per CPU core

Parallel Efficiency = average(comp) / runtime

• Average(comp) is the ideal runtime when considering parallelism

Parallel Efficiency ideal runtime = average(comp) = sum(comp) / n

• It is the runtime we would get if all useful work (comp) is split evenly over
the cores with no overheads from the parallelism

43

The idea of ‘additive’ metrics

• Look again at POP’s Global Efficiency
• This measures efficiency of the parallelisation combined with inefficiency due to any

increase in useful computation
• Define comp_ref as useful computation on our reference case
• And n is number of cores for the other cases under consideration

Global Efficiency = [sum(comp_ref)/n] / runtime

• We can think of the ‘ideal runtime’ for Global Efficiency

Global Efficiency ideal runtime = sum(comp_ref)/n

• This is the runtime we would get if the work from the reference case was
split evenly over n cores with no overheads

44

The idea…..

• We’ll define some performance metrics that can be mapped to known issues
• For each issue / performance metric we define an ‘ideal runtime’
• Then for each issue

Efficiency = ideal runtime / runtime
• We can also define:

Inefficiency = 1 - efficiency

• For optimal performance: efficiency = 1, and inefficiency = 0

• This defines a hierarchy where we can add ‘child’ inefficiency values to get the
‘parent’ inefficiency value

• Since Inefficiency = ‘time cost of issue(s)’ / runtime
• Splitting the cost of the bottleneck into the individual contributions is the same as

splitting the inefficiency value
45

POP’s ‘additive’ metric methodology

• Efficiency tells us what fraction of our actual execution time would
remain after removing a specific issue or set of issues
• Efficiency is a nice metric when we want to think in terms of ideal runtimes

• Inefficiency tells us what fraction of our actual execution time would
be removed by eliminating a specific issues or set of issues
• We can add child inefficiencies to obtain the parent metric value

• Inefficiency is a nice metric when we want to split a parent metric into contributions

46

Efficiency and inefficiency

• We split Parallel Efficiency into
1. Load balance efficiency – this tells us the cost of the computational

imbalance that exists independently of the MPI
2. Communication efficiency – tells us the total cost of MPI

• We next split Communication Efficiency into
1. Transfer efficiency

• The cost of time in data transfer
• This time would vanish if the network had zero latency & infinite bandwidth

2. Serialization Efficiency
• The cost of MPI dependencies i.e. time cost of MPI which occurs even on an ideal

network
• This would vanish if MPI dependencies could somehow be removed

47

MPI child metrics

• The Load Balance Efficiency reflects how
well the distribution of work over the
processes is done in the application.

• The Load Balance Inefficiency is measured
by the difference between the maximum
time the processes spend in computation
and the average time the processes spends
in computation.

Load Balance Efficiency
• Global Efficiency

• Parallel Efficiency
• Load Balance Efficiency
• Communication Efficiency

• Serialization Efficiency
• Transfer Efficiency

• Computation Efficiency
• IPC Scaling
• Instruction Scaling
• Frequency Scaling

Load Balance Ef,iciency= runtime −max comp + avg(comp)
runtime

• The Load Balance Efficiency reflects how
well the distribution of work to processes is
done in the application

Load Balance Ef,iciency =
runtime −max comp + avg(comp)

runtime

49

Load Balance Efficiency

• Global Efficiency
• Parallel Efficiency

• Load Balance Efficiency
• Communication Efficiency

• Serialization Efficiency
• Transfer Efficiency

• Computation Efficiency
• IPC Scaling
• Instruction Scaling
• Frequency Scaling

Comp

Comp

Comm

Comm

Comp Comm

Comp

Comp

Comm

Comm

Comp Comm

P2

P1

P0

Example 1: good load balance (LB = 100%)

Comp

Comp

Comm

Comm

Comp Comm

Comp

Comp

Comm

Comm

Comp Comm

P2

P1

P0

Example 2: bad load balance (LB = 77%)

• The Communication Efficiency reflects the
loss of efficiency by MPI communication
• The Communication Efficiency can be

computed as

Communication Ef,iciency = max(comp)runtime

50

Communication Efficiency

• Global Efficiency
• Parallel Efficiency

• Load Balance Efficiency
• Communication Efficiency

• Serialization Efficiency
• Transfer Efficiency

• Computation Efficiency
• IPC Scaling
• Instruction Scaling
• Frequency Scaling

Comp

Comp

Comm

Comm

Comp Comm

Comp

Comm Comm

Comp

Comm

P2

P1

P0

Example: Compute Communication Efficiency

1 sec. 5 sec. !1 6
4 sec. 2 sec. !4 6
5 sec. 1 sec. !5 6

Com.Eff. = ⁄! " = 83%

• The Communication Efficiency reflects the
loss of efficiency by communication.

• The Communication Efficiency can be split
further into Serialization Efficiency and
Transfer Efficiency.

51

Communication Efficiency

• Global Efficiency
• Parallel Efficiency

• Load Balance Efficiency
• Communication Efficiency

• Serialization Efficiency
• Transfer Efficiency

• Computation Efficiency
• IPC Scaling
• Instruction Scaling
• Frequency Scaling

• The Transfer Efficiency describes loss of
efficiency due to actual data transfer.
• The Transfer Efficiency can be computed as

Transfer Ef,iciency=
ideal network runtime

runtime

52

Transfer Efficiency

• Global Efficiency
• Parallel Efficiency

• Load Balance Efficiency
• Communication Efficiency

• Serialization Efficiency
• Transfer Efficiency

• Computation Efficiency
• IPC Scaling
• Instruction Scaling
• Frequency Scaling

4s

2s 4s

2s 2s 4s

4s 2s

4s

2s 2s

2s 2s

4s

Execution on a real network Simulation on an ideal network

= Communication= Computation

Tr.Eff. = #
$%

= 67%

• The Serialization Efficiency describes loss
of efficiency due to dependencies between
processes.
• Dependencies can be observed as waiting

time in MPI calls where no data is
transferred, i.e. where one process has not
yet arrived at a communication call.
• On an ideal network with instantaneous

data transfer these inefficiencies are still
present.

53

Serialization Efficiency

• Global Efficiency
• Parallel Efficiency

• Load Balance Efficiency
• Communication Efficiency

• Serialization Efficiency
• Transfer Efficiency

• Computation Efficiency
• IPC Scaling
• Instruction Scaling
• Frequency Scaling

4s

2s 2s

2s 2s

4s

Simulation on an ideal network

= Communication= Computation

• Serialization Inefficiency cost is the difference
between the ideal network runtime and the
maximum time in useful computation

Serialization Ef.iciency =
runtime − ideal network runtime +max(comp)

runtime

54

Serialization Efficiency

• Global Efficiency
• Parallel Efficiency

• Load Balance Efficiency
• Communication Efficiency

• Serialization Efficiency
• Transfer Efficiency

• Computation Efficiency
• IPC Scaling
• Instruction Scaling
• Frequency Scaling

4s

2s 4s

2s 2s 4s

4s 2s

4s

2s 2s

2s 2s

4s

Execution on a real network Simulation on an ideal network

= Communication= Computation

Ser.Eff. = $&
$%

= 83%

55

MPI metrics - Example 1
Number of Processes 48 96 192 384 768
Global Efficiency 0.94 0.84 0.73 0.54 0.34
➥ Parallel Efficiency 0.94 0.89 0.81 0.71 0.55
➥Load Balance 0.97 0.97 0.96 0.97 0.97
➥Communication Efficiency 0.96 0.92 0.84 0.74 0.58
➥Transfer Efficiency 0.98 0.94 0.87 0.80 0.70
➥Serialization Efficiency 0.99 0.98 0.97 0.93 0.87

➥Computation Scaling 1.00 0.94 0.90 0.77 0.63
➥Instruction Scaling 1.00 0.95 0.88 0.74 0.60
➥IPC Scaling 1.00 1.00 1.03 1.04 1.05
➥Frequency Scaling 1.00 1.00 1.00 1.00 0.99

• Load balance, IPC Scaling and Frequency Scaling are good
• The main issues are Instruction Scaling and time in MPI data transfer
• Some efficiency is lost due to serialization

56

MPI metrics - Example 2

• In the original code MPI data transfer and IPC scaling are very low
• In the new version of the code, we see big improvements in efficiency

• Most of the values can be easily extracted by hand using trace
visualisation tools, but this is painful for large traces
• With Extrae traces Dimemas is required to find ideal network runtime
• Intel’s ITAC can also calculate this with ITAC traces

• Hardware counter data usually requires PAPI
• Or VTtune

• NAG-PyPOP can be used to run the entire analysis i.e.
• Extracts all the values needed

• Uses Paramedir, another BSC tool (included with Paraver’s Linux version)
• Runs Dimemas
• PyPOP can also chop traces for a region of interest if the Extrae API is used to

switch tracing on & off
57

How to calculate

https://pypi.org/project/NAG-PyPOP/

Module 4
POP metrics for OpenMP and Hybrid codes

58

• What do we want to know for OpenMP code?
1. How much inefficiency is due to execution outside OpenMP regions
2. How much inefficiency is within OpenMP regions

• We can easily define metrics to calculate efficiencies for these
• Serial region efficiency

• Measures the cost of Amdahl's Law
• OpenMP efficiency

• We can split the OpenMP Efficiency further e.g.
• A contribution per OpenMP region
• A contribution per source of inefficiency

• e.g. load imbalance, etc
• VTune does this very well

59

Additive metrics for OpenMP

• T2: OMP Computation = 1 x 6 sec
• T1: OMP Computation: 2 x 4.5 sec.
• T0: OMP Computation: 3 x 3 sec.

60

Additive metrics for OpenMP

• OpenMP inefficiency is the difference between
• Time in OpenMP (12s)
• Average OpenMP computation (8s)

• The ideal runtime in this case is 16 - 12 + 8 = 12s
• OpenMP Efficiency is 12 / 16 = 0.75
• i.e. ideal runtime / actual runtime

• 25% of the run time is caused by inefficiency within the OpenMP

• T2: OMP Computation = 1 x 6 sec
• T1: OMP Computation: 2 x 4.5 sec.
• T0: OMP Computation: 3 x 3 sec.

61

Additive metrics for OpenMP

• Serial Region inefficiency (for nt threads) is time in serial computation
multiplied by (nt-1) / nt
• Time in serial computation is 4s
• (nt-1) / nt is 2/3

• The idea runtime would be 16 – 4 x (2/3)
• Serial Region Efficiency = [16 – 4(2/3)] / 16 = 0.83
• 17% of the run time is due to serial execution outside OpenMP

• Low Parallel Efficiency has 2 causes
• Inefficiency withing OpenMP regions
• Too much serial computation outside OpenMP

• IPC scaling is also a problem

12/15/21 62

OpenMP metrics example
Number of cores 1 10 18 30 45
Global Efficiency 1.00 0.80 0.58 0.36 0.26
Parallel Efficiency 1.00 0.86 0.69 0.60 0.55
OpenMP Efficiency 1.00 0.95 0.81 0.74 0.70
Serial Region Efficiency 1.00 0.91 0.88 0.86 0.85
Computational Scaling 1.00 0.94 0.84 0.60 0.48
Instruction Scaling 1.00 1.01 1.02 1.00 1.00
IPC Scaling 1.00 0.92 0.82 0.61 0.50
Frequency Scaling 1.00 1.00 1.00 0.98 0.95

• We can start with Parallel Efficiency and split this into child metrics
• With additive metrics we have complete freedom about how to define

child metrics

• One obvious option is to split Parallel Efficiency into
1. Process Efficiency (ignores all thread inefficiencies)
2. Thread Efficiency (ignores process inefficiencies)

63

Additive metrics for MPI + OpenMP

• To assess Process Efficiency we want to know
1. How evenly ‘useful work’ is distributed over the processes
2. How much time the processes spend in MPI

• Also cost of data transfer and serialisation due to dependencies

• These are the same performance issues as pure MPI code

• If we ignore the threading there are only three states, i.e.
1. A process is in serial computation on the master thread: serial_comp
2. A process is inside an OpenMP parallel region: omp
3. A process is inside MPI and outside OpenMP

• When ignoring the threading we will assume only time outside OpenMP
and inside MPI is non-useful

64

Process Efficiency

65

Process Efficiency
• We define serial_comp and omp as useful

• Time in MPI and outside OpenMP is considered the performance issue

useful = serial_comp + omp

• And we define an ‘ideal runtime’ as average(useful)

Process Efficiency = average(useful) / runtime

• We can use the MPI additive methodology to define ideal run times that
split Process Efficiency into

• Load Balance Efficiency – cost of imbalance of useful over processes
• Transfer Efficiency – cost of MPI time due to data transfer over network
• Serialization Efficiency – remaining cost of time in MPI

• We define ‘ideal runtime’ values per issue that allow us to split
Process Efficiency into child metrics

1. Process Communication Efficiency
= max(useful) / runtime

2. Process Load Balance Efficiency
= [runtime - max(useful) + average(useful)] / runtime

• We can similarly split Process Communication Efficiency
• Process Transfer Efficiency measures cost of data transfer
• Process Serialization Efficiency measures cost of time in MPI without transfer

66

Process Efficiency child metrics

• Process Load Balance Efficiency reflects
how well the distribution of useful work
over processes is done, where useful =
serial_comp + omp
Process Load Balance Ef,iciency =

runtime −max useful + avg(useful)
runtime

67

Process Load Balance Efficiency
• Parallel Efficiency

• Thread Efficiency
• Process Efficiency

• Process Load Balance Efficiency
• Process Comm. Efficiency

• Process Serialization Efficiency
• Process Transfer Efficiency

Useful

Useful

Comm

Comm

Useful Comm

Useful

Useful

Comm

Comm

Useful Comm

P2

P1

P0

Example 1: good load balance (LB = 100%)

Useful

Useful

Comm

Comm

Useful Comm

Useful

Useful

Comm

Comm

Useful Comm

P2

P1

P0

Example 2: bad load balance (LB = 77%)

• The Process Communication Efficiency
reflects the loss of efficiency by
communication.
• The Communication Efficiency can be

computed as

Communication Eff = max(useful)runtime

68

Process Communication Efficiency

Useful

Useful

Comm

Comm

Useful Comm

Useful

Comm Comm

Useful

Comm

P2

P1

P0

Example: Useful Communication Efficiency

1 sec. 5 sec. !1 6
4 sec. 2 sec. !4 6
5 sec. 1 sec. !5 6

CommE = ⁄! " = 83%

• Parallel Efficiency
• Thread Efficiency
• Process Efficiency

• Process Load Balance Efficiency
• Process Comm. Efficiency

• Process Serialization Efficiency
• Process Transfer Efficiency

• We still need to account for thread inefficiencies, i.e.
1. Serial computation outside OpenMP (due to Amdahl's Law)
2. Time not doing useful computation inside OpenMP regions

• For Thread Efficiency we can define
Ideal runtime = runtime - avg(serial_comp) - avg(omp) + avg(comp)

• As per OpenMP we use the methodology to split Thread Efficiency into
• Average cost of serial computation outside OpenMP (i.e. Amdahl's Law)
• Average cost of inefficiencies within OpenMP parallel regions

• We can then split OpenMP Parallel Efficiency
• Contribution per bottleneck (e.g. load balance within OpenMP)
• Contribution per parallel region

69

Thread Efficiency

• Serial Region Efficiency
• Measures cost of serial computation on master threads outside OpenMP

• i.e. cost of Amdahl's Law

• OpenMP Parallel Efficiency
• Measures how well the OpenMP regions are parallelised

• And we can split OpenMP Parallel Efficiency various ways
1. We can calculate a contribution per OpenMP parallel region
2. Or we can calculate a contribution per bottleneck class e.g.

• Imbalance of computation within OpenMP
• Average time outside useful computation in MPI, synchronisation, etc.

• This is subject to availability of suitable trace data & tools!
• e.g. VTune or the NAG-PyPOP Python package
• PyPOP is a good tool for automatically calculating these metrics from Extrae data

70

Thread Efficiency child metrics

71

Additive metrics hierarchy

Parallel
Efficiency

Process
Efficiency

Process
Communication

Efficiency

Process Transfer
Efficiency

Process
Serialization

Efficiency

Process Load
Balance

Efficiency

Thread Efficiency

Serial Region
Efficiency

OpenMP Parallel
Efficiency

OpenMP Load
Balance

Efficiency

Other OpenMP
efficiency
metrics

72

Example (strong scaling)

170

190

210

230

250

270

290

1 2 3 4
compute nodes

Wall clock time (s)

1 thread per process

73

Mixed results with 2 threads/proc!!

170

190

210

230

250

270

290

1 2 3 4
compute nodes

Wall clock time (s)

2 threads per process

1 thread per process

74

What is going on?

170

190

210

230

250

270

290

1 2 3 4
compute nodes

Wall clock time (s)

8 threads per process

2 threads per process

1 thread per process

Number of compute nodes 1 2 4
Number of Processes 48 24 6 96 48 12 192 96 24
Threads per Process 1 2 8 1 2 8 1 2 8
Total Threads 48 48 48 96 96 96 192 192 192
Speedup 1.00 0.77 0.60 0.84 0.80 0.74 0.73 0.94 0.94
Global Efficiency 0.50 0.39 0.30 0.21 0.20 0.19 0.09 0.12 0.12
 ⤷ Parallel Efficiency 0.50 0.32 0.22 0.24 0.18 0.13 0.13 0.12 0.09
 ⤷ Process Efficiency 0.51 0.42 0.57 0.24 0.24 0.33 0.13 0.17 0.22
 ⤷ Process Load balance 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
 ⤷ Process Communication Eff. 0.54 0.44 0.58 0.26 0.26 0.35 0.13 0.18 0.24
 ⤷ Process Transfer Efficiency 0.55 0.45 0.59 0.29 0.27 0.36 0.16 0.20 0.25
 ⤷ Process Serialisation Eff. 0.98 0.99 0.99 0.97 0.98 0.99 0.97 0.98 0.99
 ⤷ Thread Efficiency 1.00 0.90 0.65 1.00 0.93 0.80 1.00 0.95 0.86
 ⤷ OpenMP Parallel Efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 ⤷ Serial Region Efficiency 1.00 0.90 0.65 1.00 0.94 0.80 1.00 0.95 0.86
 ⤷ Computational Scaling 1.00 1.22 1.37 0.88 1.12 1.39 0.73 0.98 1.36
 ⤷ Instruction Scaling 1.00 1.04 1.05 0.91 1.00 1.04 0.75 0.91 1.02
 ⤷ IPC Scaling 1.00 1.16 1.29 0.98 1.11 1.32 0.99 1.07 1.33
 ⤷ Frequency Scaling 1.00 1.02 1.01 0.99 1.02 1.01 0.98 1.00 1.01

75

POP metrics to the rescue!

Number of compute nodes 1 2 4
Number of Processes 48 24 6 96 48 12 192 96 24
Threads per Process 1 2 8 1 2 8 1 2 8
Total Threads 48 48 48 96 96 96 192 192 192
Speedup 1.00 0.77 0.60 0.84 0.80 0.74 0.73 0.94 0.94
Global Efficiency 0.50 0.39 0.30 0.21 0.20 0.19 0.09 0.12 0.12
 ⤷ Parallel Efficiency 0.50 0.32 0.22 0.24 0.18 0.13 0.13 0.12 0.09
 ⤷ Process Efficiency 0.51 0.42 0.57 0.24 0.24 0.33 0.13 0.17 0.22
 ⤷ Process Load balance 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
 ⤷ Process Communication Eff. 0.54 0.44 0.58 0.26 0.26 0.35 0.13 0.18 0.24
 ⤷ Process Transfer Efficiency 0.55 0.45 0.59 0.29 0.27 0.36 0.16 0.20 0.25
 ⤷ Process Serialisation Eff. 0.98 0.99 0.99 0.97 0.98 0.99 0.97 0.98 0.99
 ⤷ Thread Efficiency 1.00 0.90 0.65 1.00 0.93 0.80 1.00 0.95 0.86
 ⤷ OpenMP Parallel Efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 ⤷ Serial Region Efficiency 1.00 0.90 0.65 1.00 0.94 0.80 1.00 0.95 0.86
 ⤷ Computational Scaling 1.00 1.22 1.37 0.88 1.12 1.39 0.73 0.98 1.36
 ⤷ Instruction Scaling 1.00 1.04 1.05 0.91 1.00 1.04 0.75 0.91 1.02
 ⤷ IPC Scaling 1.00 1.16 1.29 0.98 1.11 1.32 0.99 1.07 1.33
 ⤷ Frequency Scaling 1.00 1.02 1.01 0.99 1.02 1.01 0.98 1.00 1.01

76

What needs investigating further?

Number of compute nodes 1 2 4
Number of Processes 48 24 6 96 48 12 192 96 24
Threads per Process 1 2 8 1 2 8 1 2 8
Total Threads 48 48 48 96 96 96 192 192 192
Speedup 1.00 0.77 0.60 0.84 0.80 0.74 0.73 0.94 0.94
Global Efficiency 0.50 0.39 0.30 0.21 0.20 0.19 0.09 0.12 0.12
 ⤷ Parallel Efficiency 0.50 0.32 0.22 0.24 0.18 0.13 0.13 0.12 0.09
 ⤷ Process Efficiency 0.51 0.42 0.57 0.24 0.24 0.33 0.13 0.17 0.22
 ⤷ Process Load balance 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
 ⤷ Process Communication Eff. 0.54 0.44 0.58 0.26 0.26 0.35 0.13 0.18 0.24
 ⤷ Process Transfer Efficiency 0.55 0.45 0.59 0.29 0.27 0.36 0.16 0.20 0.25
 ⤷ Process Serialisation Eff. 0.98 0.99 0.99 0.97 0.98 0.99 0.97 0.98 0.99
 ⤷ Thread Efficiency 1.00 0.90 0.65 1.00 0.93 0.80 1.00 0.95 0.86
 ⤷ OpenMP Parallel Efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 ⤷ Serial Region Efficiency 1.00 0.90 0.65 1.00 0.94 0.80 1.00 0.95 0.86
 ⤷ Computational Scaling 1.00 1.22 1.37 0.88 1.12 1.39 0.73 0.98 1.36
 ⤷ Instruction Scaling 1.00 1.04 1.05 0.91 1.00 1.04 0.75 0.91 1.02
 ⤷ IPC Scaling 1.00 1.16 1.29 0.98 1.11 1.32 0.99 1.07 1.33
 ⤷ Frequency Scaling 1.00 1.02 1.01 0.99 1.02 1.01 0.98 1.00 1.01

77

Single thread issues

Number of compute nodes 1 2 4
Number of Processes 48 24 6 96 48 12 192 96 24
Threads per Process 1 2 8 1 2 8 1 2 8
Total Threads 48 48 48 96 96 96 192 192 192
Speedup 1.00 0.77 0.60 0.84 0.80 0.74 0.73 0.94 0.94
Global Efficiency 0.50 0.39 0.30 0.21 0.20 0.19 0.09 0.12 0.12
 ⤷ Parallel Efficiency 0.50 0.32 0.22 0.24 0.18 0.13 0.13 0.12 0.09
 ⤷ Process Efficiency 0.51 0.42 0.57 0.24 0.24 0.33 0.13 0.17 0.22
 ⤷ Process Load balance 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
 ⤷ Process Communication Eff. 0.54 0.44 0.58 0.26 0.26 0.35 0.13 0.18 0.24
 ⤷ Process Transfer Efficiency 0.55 0.45 0.59 0.29 0.27 0.36 0.16 0.20 0.25
 ⤷ Process Serialisation Eff. 0.98 0.99 0.99 0.97 0.98 0.99 0.97 0.98 0.99
 ⤷ Thread Efficiency 1.00 0.90 0.65 1.00 0.93 0.80 1.00 0.95 0.86
 ⤷ OpenMP Parallel Efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 ⤷ Serial Region Efficiency 1.00 0.90 0.65 1.00 0.94 0.80 1.00 0.95 0.86
 ⤷ Computational Scaling 1.00 1.22 1.37 0.88 1.12 1.39 0.73 0.98 1.36
 ⤷ Instruction Scaling 1.00 1.04 1.05 0.91 1.00 1.04 0.75 0.91 1.02
 ⤷ IPC Scaling 1.00 1.16 1.29 0.98 1.11 1.32 0.99 1.07 1.33
 ⤷ Frequency Scaling 1.00 1.02 1.01 0.99 1.02 1.01 0.98 1.00 1.01

78

Single node hybrid performance

Number of compute nodes 1 2 4
Number of Processes 48 24 6 96 48 12 192 96 24
Threads per Process 1 2 8 1 2 8 1 2 8
Total Threads 48 48 48 96 96 96 192 192 192
Speedup 1.00 0.77 0.60 0.84 0.80 0.74 0.73 0.94 0.94
Global Efficiency 0.50 0.39 0.30 0.21 0.20 0.19 0.09 0.12 0.12
 ⤷ Parallel Efficiency 0.50 0.32 0.22 0.24 0.18 0.13 0.13 0.12 0.09
 ⤷ Process Efficiency 0.51 0.42 0.57 0.24 0.24 0.33 0.13 0.17 0.22
 ⤷ Process Load balance 0.97 0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99
 ⤷ Process Communication Eff. 0.54 0.44 0.58 0.26 0.26 0.35 0.13 0.18 0.24
 ⤷ Process Transfer Efficiency 0.55 0.45 0.59 0.29 0.27 0.36 0.16 0.20 0.25
 ⤷ Process Serialisation Eff. 0.98 0.99 0.99 0.97 0.98 0.99 0.97 0.98 0.99
 ⤷ Thread Efficiency 1.00 0.90 0.65 1.00 0.93 0.80 1.00 0.95 0.86
 ⤷ OpenMP Parallel Efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 ⤷ Serial Region Efficiency 1.00 0.90 0.65 1.00 0.94 0.80 1.00 0.95 0.86
 ⤷ Computational Scaling 1.00 1.22 1.37 0.88 1.12 1.39 0.73 0.98 1.36
 ⤷ Instruction Scaling 1.00 1.04 1.05 0.91 1.00 1.04 0.75 0.91 1.02
 ⤷ IPC Scaling 1.00 1.16 1.29 0.98 1.11 1.32 0.99 1.07 1.33
 ⤷ Frequency Scaling 1.00 1.02 1.01 0.99 1.02 1.01 0.98 1.00 1.01

79

Single versus multiple node hybrid

• The metrics are defined in documents on the POP website
• https://pop-coe.eu/further-information/learning-material

• The data needed to calculate these can be extracted by hand from
Extrae traces using Paraver
• This is very tedious
• It requires advanced expertise in Paraver
• It is easy to make mistakes

• Using NAG-PyPOP is highly recommended
• Note: MPI inside OpenMP is not fully supported

80

How to calculate

https://pop-coe.eu/further-information/learning-material

Module 5
BSC tracing tools & PyPOP

81

• Must capture data as efficiently and accurately as possible
• Look for something that can
• Gather the relevant data (architecture, parallelism)
• Gather just the relevant data (configurable filters)
• Provide useful information (postprocessing tools, trace explorer)

• Common to use multiple tools
• Different views of the problem
• Can check unexpected results
• In depth info on specific issues (GPU, vectorisation, I/O etc.)

82

Choosing the correct tracing tool

• Measurement code is inserted so every event of interest is captured e.g.
• Hardware counters e.g. number of cycles or instructions
• Function names
• Function arguments e.g. size of MPI calls

• Instrumentation can occur before/during compilation or at run time
• There are various ways to do this e.g.
• Manual instrumentation of source code by the user
• Automatic compiler instrumentation
• Intercepting calls to parallel libraries e.g. using LD_PRELOAD

83

Collecting trace data - instrumentation

• Tracing advantages
• Event traces preserve relationships between individual events
• Allows reconstruction of dynamic application behaviour on any required level

of abstraction
• Most general measurement technique
• Profile data can be reconstructed from event traces

• Disadvantages
• Traces can very quickly become extremely large
• Tracing can increase run time significantly

• If it does, is the data representative of the untraced execution?
• Writing events to file at runtime may causes perturbation

• Sampling is an alternative to tracing
• Much less data & performance information

84

Tracing Pros & Cons

• Read the tools documentation and check what is and isn’t supported e.g.
• Is nested OpenMP threading supported?
• Is parallelism captured when linking against precompiled libraries?

• Understand the mechanism of instrumentation
• What events are and aren’t captured?

• Check output logs after running
• Errors? Warnings?

• View the trace data
• Is it complete?

• Missing processes or threads?
• Missing events?

• Sanity check as much as possible
• e.g. check for agreement between run times with and without tracing

• Tracing may add a significant time overhead

85

Knowing how to trust trace data

We use the following tools (developed by some of the POP partners)
• Extrae (tracing) + Paraver (visualisation) + Dimemas (simulation)
• PyPOP for automated generation of POP metrics from Extrae traces

• Score-P (tracing) + Scalasca (post processing) + Cube (visualisation)

To understand how to generate trace files & calculate POP metrics
• See POP website learning material & online training
• https://pop-coe.eu/further-information/learning-material

Other tracing tools can be used e.g. Intel’s VTune

86

POP tracing tools

https://pop-coe.eu/further-information/learning-material

• Today we’ve only time to introduce
• Extrae, Paraver, Dimemas & PyPOP

• For more information on Score-P, Scalasca & Cube
• 21st POP Webinar recording - The Scalasca Scalable Parallel Performance

Analysis Toolset - For POP Assessments and Beyond

• Also see the learning material on the POP CoE website

87

Score-P + Scalasca + Cube

https://pop-coe.eu/blog/21st-pop-webinar-the-scalasca-scalable-parallel-performance-analysis-toolset-for-pop
https://pop-coe.eu/further-information/online-training

• Since 1991
• Based on traces
• Open Source

• http://tools.bsc.es

• Core tools:
• Extrae – instrumentation
• Paraver (& paramedir) – trace analysis
• Dimemas – message passing simulator

• Focus
• Detail, variability, flexibility
• Behavioral structure vs. syntactic structure
• Intelligence: Performance Analytics

The BSC Tools

http://tools.bsc.es/

Extrae

89

• Symbol substitution through LD_PRELOAD
• Specific libraries for each combination of runtimes

• MPI
• OpenMP
• OpenMP+MPI
• …

• Dynamic instrumentation
• Based on Dyninst (developed by U.Wisconsin/U.Maryland)

• Instrumentation in memory
• Binary rewriting

• Static link (i.e., PMPI, Extrae API)

90

How does Extrae work?

Recommended

• Parallel programming models
• MPI, OpenMP, pthreads, OmpSs, CUDA, OpenCL, Java, Python…

• Platforms
• Intel, Cray, BlueGene, MIC, ARM, Android, Fujitsu, Sparc…

• Performance Counters
• Using PAPI interface

• Link to source code
• Callstack at MPI routines
• OpenMP outlined routines
• Selected user functions (Dyninst)

• Periodic sampling
• User events (Extrae API)

91

Extrae Features

No need
to

recompile
/ relink!

1. Adapt the job submission script
2. (Optional) Tune the Extrae XML configuration file
• Examples distributed with Extrae at $EXTRAE_HOME/share/example

3. Run it!

• For further reference check the Extrae User Guide:

• Also distributed with Extrae at $EXTRAE_HOME/share/doc

• https://tools.bsc.es/tools_manuals

92

Using Extrae in 3 steps

https://tools.bsc.es/tools_manuals

(...)

Application path
PISVM=../../bin/pisvm-train

Input path
TRAINDATA=../../input/sdap_area_all_training.el

Extrae path
export EXTRAE_HOME=/homec/deep/deep83/tools/extrae/3.5.2
export EXTRAE_WORK_DIR=/work/$USER/pisvm/romeraw

Run the application
srun ./trace.sh $PISVM –D –o 1024 –q 512 –c 10000

–g 16 –t 2 –m 1024 –s 0 $TRAINDATA

Generate the trace
export TRACE_NAME=pisvm-romeraw-train.prv
${EXTRAE_HOME}/bin/mpi2prv

–f ${EXTRAE_WORK_DIR}/TRACE.mpits
–o ${TRACE_NAME}

93

Step 1: Adapt the job script to load Extrae (LD_PRELOAD)

train.sh

#!/bin/bash

Load Extrae
source ${EXTRAE_HOME}/etc/extrae.sh
export EXTRAE_CONFIG_FILE=../../../../config/extrae.xml

Load the tracing library (choose C/Fortran)
export LD_PRELOAD=$EXTRAE_HOME/lib/libmpitrace.so
#export LD_PRELOAD=$EXTRAE_HOME/lib/libmpitracef.so

Run the program
$*

trace.sh

Select tracing
library

• Choose depending on the application type

94

Step 1: Which tracing library?

Library Serial MPI OpenMP pthread CUDA
libseqtrace ü

libmpitrace[f]1 ü

libomptrace ü

libpttrace ü

libcudatrace ü

libompitrace[f] 1 ü ü

libptmpitrace[f] 1 ü ü

libcudampitrace[f] 1 ü ü

1 include suffix “f” in Fortran codes

95

Step 2: Extrae XML configuration
<mpi enabled="yes">
<counters enabled="yes" />

</mpi>

<openmp enabled="yes">
<locks enabled="no" />
<counters enabled="yes" />

</openmp>

<pthread enabled="no">
<locks enabled="no" />
<counters enabled="yes" />

</pthread>

<callers enabled="yes">
<mpi enabled="yes">1-3</mpi>
<sampling enabled="no">1-5</sampling>

</callers>

Trace MPI calls + HW counters

Trace call-stack events @
MPI calls

96

Step 2: Extrae XML configuration (II)

<counters enabled="yes">
<cpu enabled="yes" starting-set-distribution=“cyclic">
<set enabled="yes" domain="all" changeat-time=“0">
PAPI_TOT_INS, PAPI_TOT_CYC, PAPI_L1_DCM, PAPI_L2_DCM

</set>
<set enabled="yes" domain="all" changeat-time="500000us">
...

</set>
<set enabled="yes" domain="all" changeat-time="500000us">
...

</set>
<set enabled="yes" domain="all" changeat-time="500000us">
...

</set>
</cpu>
<network enabled="no" />
<resource-usage enabled="no" />
<memory-usage enabled="no" />

</counters>

Select which HW
counters are

measured

97

Step 2: Extrae XML configuration (III)
<buffer enabled="yes">

<size enabled="yes">5000000</size>
<circular enabled="no" />

</buffer>

<sampling enabled="no" type="default" period="50m" variability="10m" />

<merge enabled=“yes"
synchronization="default"
tree-fan-out=“16"
max-memory="512"

joint-states="yes"
keep-mpits="yes"
sort-addresses="yes"

overwrite="yes“
>

$TRACE_NAME$
</merge>

Trace buffer size

Collect more
measurements
with sampling

Merge intermediate
files into Paraver trace

Paraver

Paraver – Performance data browser

Timelines

Raw data

2/3D tables
(Statistics)

Goal = Flexibility
No semantics

Programmable

Comparative analyses
Multiple traces
Synchronize scales

+ trace manipulation
Trace visualization/analysis

• From timelines to tables

Tables: Profiles, histograms, correlations

MPI calls profile

Useful Duration

Histogram Useful Duration

MPI calls

CESM: 16 processes, 2 simulated days

• Histogram useful computation duration shows high
variability
• How is it distributed?

• Dynamic imbalance
• In space and time
• Day and night
• Season ? J

From tables to timelines

• Data handling/summarization capability
• Filtering

• Subset of records in original trace
• By duration, type, value,…
• Filtered trace is still a Paraver trace and can be

analysed with the same cfgs (as long as the data
required has been kept)

• Cutting
• All records in a given time interval
• Only some processes

• Software counters
• Summarized values computed from those in the

original trace emitted as new even types
• #MPI calls, total hardware count,…

Trace manipulation

570 s
2.2 GB

MPI, HWC

WRF-NMM
Peninsula 4km
128 procs

570 s
5 MB

4.6 s
36.5 MB

Dimemas

• Simulation: Highly non-linear model
• MPI protocols, resource contention…

• Parametric sweeps
• On abstract architectures
• On application computational regions

• What-if analysis
• Ideal machine (instantaneous network)
• Estimating impact of ports to MPI+OpenMP/CUDA/…
• Should I use asynchronous communications?
• Are all parts equally sensitive to network?

• MPI sanity check
• Modeling nominal

• Paraver – Dimemas tandem
• Analysis and prediction
• What-if from selected time window

Dimemas: Coarse grain, Trace driven simulation

CPU

Local

Memory

B

CPU

CPU

L

CPU

CPU

CPU

Local

Memory

L

CPU

CPU

CPU

Local

Memory

L

Impact of BW (L=8; B=0)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 4 16 64 256 1024

Ef
fic

ie
nc

y

NMM 512
ARW 512
NMM 256
ARW 256
NMM 128
ARW 128

Detailed feedback on simulation (trace)

The impossible machine: BW = ¥, L = 0

• Actually describes/characterizes intrinsic application behavior
• Load balance problems?
• Dependence problems?

Ideal machine

waitall

sendrecv

alltoall

Real
run

Ideal
network

Allgather
+

sendrecv
allreduceGADGET @ Nehalem cluster

256 processes

PyPOP

What PyPOP is:
• Simple tool to automate common tasks in performance profiling
• Rapidly analyse traces and compute POP Metrics
• Easily generate high quality plots and reports
• User friendly and tool agnostic

• Extrae and manual input currently supported, other formats in development
• Backend framework to build custom analyses using Python
But. . .
• Only one part of the performance analysis workflow
• Not a substitute for manually inspecting traces
• Still under development

107

What is PyPOP?

PyPOP design choices and philosophy
• Python ≥3.6 with Numpy, Pandas, Bokeh
• Widely used in science/industry — minimise barrier to entry
• Plugin-based architecture for extensibility

• Jupyter notebook based interface
• “Literate programming” encourages self-documentation and reproducibility
• Easily mix text/code/plotting/GUI elements
• Generate reports directly from an analysis notebook

• “Wizard”-like GUI for non Python-programmers
• Generate POP metrics and reports without writing Python code

108

What is PyPOP?

POP Metrics from Extrae traces

1. Collect traces with Extrae — required data:
• MPI Events
• OpenMP Events
• Hardware counters: Total Instructions, Total Cycles

2. Optionally pre-process traces
• Pre-process large (GBs) traces into small (KBs) summary files
• Speeds up notebook loading and minimizes data downloads

109

Typical PyPOP Workflow

POP Metrics from Extrae traces

3. Open Jupyter Notebook with “Wizard” GUI
• Select and process traces or summary files using the GUI
• Quick initial analysis to generate POP metrics

4. Generate report notebook from GUI
• Report template notebook containing metric table and scaling plot
• Add description/discussion text to notebook
• Customise analysis using Python code
• Convert notebook to PDF to create shareable report

110

Typical PyPOP Workflow

A tool for efficient performance analysis workflows
• Python based with Jupyter notebook interface
• Quickly analyse traces and compute POP metrics
• Plot metric tables and scaling graphs
• Output fully annotated PDF reports

PyPOP Github
• https://github.com/numericalalgorithmsgroup/pypop

111

PyPOP summary

https://github.com/numericalalgorithmsgroup/pypop

12/15/21 112

Contact:
https://www.pop-coe.eu
pop@bsc.es
@POP_HPC
youtube.com/POPHPC

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553 and 824080.

Performance Optimisation and Productivity
A Centre of Excellence in HPC

