
EU H2020 Center of Excellence (CoE) 1 October 2015 – 31 March 2018

Grant Agreement No 676553

POP: The Story So Far
Mike Dewar, NAG Ltd

• Overview of codes investigated

• Outline of an audit

• Code audit examples

• Our first proof of concept projects

• Examples of impact

• Summary

2

Outline

3

Customers by Country

31%

8%

32%

3%

3%

10%

8%

5% UK

Sweden

Germany

Belgium

Luxembourg

Spain

France

Italy

Programming Languages

4

42%

21%

5%

16%

8%

8%

Fortran

C++

C

C & Fortran

Python

Others

Parallelisation Scheme

5

34%

21%

37%

8%

MPI

OMP

MPI+OMP

Others

6

Subject Areas

34%

18%

13%

21%

3%

3%

8%

Engineering

Earth Science

Chemistry

Physics

Maths

Medical

Others

Area Codes

Computational Fluid Dynamics DROPS (RWTH Aachen), Nek5000 (PDC KTH), SOWFA (CENER), ParFlow
(FZ-Juelich), FDS (COAC) & others

Electronic StructureCalculations ADF (SCM), Quantum Expresso (Cineca), FHI-AIMS (University of
Barcelona), SIESTA (BSC), ONETEP (University of Warwick)

Earth Sciences NEMO (BULL), UKCA (University of Cambridge), SHEMAT-Suite (RWTH
Aachen) & others

Finite Element Analysis Ateles (University of Siegen) & others

Gyrokinetic Plasma Turbulence GYSELA (CEA), GS2 (STFC)

Materials Modelling VAMPIRE (University of York), GraGLeS2D (RWTH Aachen), DPM
(University of Luxembourg), QUIP (University of Warwick) & others

Neural Networks OpenNN (Artelnics)

7

POP Users and their codes

● POP users help us to prepare for analysis runs (e.g. identify
representative inputs, help to compile code)

● Either POP staff do analysis runs if they have access to machines and
codes, or users can do runs themselves and supply traces to POP

● Traces are analysed to produce efficiency metrics and to help identify
underlying causes of any inefficiencies

● Result is a written report to the user presenting the results of this
analysis, including the calculated metrics

8

The POP Audit

• Application Structure
• (if appropriate) Region of Interest
• Scalability Information
• Application Efficiency

• e.g. time spent outside MPI

• Load Balance
• Whether due to Source code or external factors

• Serial Performance
• Identification of poor code quality

• Communications
• e.g. sensitivity to network performance

• Summary and Recommendations

9

Outline of a Typical Audit Report

Code Audit Examples

10

• Numerical simulation tool for studying the motion and chemical
conversion of particulate material in furnaces

• C++ code parallelised with MPI

11

DPM – University of Luxembourg

• Key audit results:
• Performance problems were

due to the way that the
code had been parallelised

• Scalability limited by end-
point contention due to
sending MPI messages in
increasing-rank order

• Magnetic materials simulation code

• C++ code parallelised with MPI

• Key audit results:
• Best enhancements would be to vectorise main loops, improve cache reuse

and replace multiple calls to the random number generator with a single call
that returns a vector of numbers

• Initial implementation of these points by the user suggests that they could
lead to 2x speedup

13

VAMPIRE – University of York

• 5D gyrokinetic code for studying flux-driven plasma turbulence in
tokamaks

• Fortran code with hybrid MPI+OpenMP

• Key audit results:
• Not fully utilising OpenMP threads: idle for 17.24% of execution time (only

1.4% due to MPI)

• Imbalance due to unequal distribution of threads on nodes

14

GYSELA – CEA

Proof of concept

15

• Simulates grain growth phenomena in polycrystalline materials

• C++ parallelized with OpenMP

• Designed for very large SMP machines (e.g. 16 sockets and 2 TB
memory)

• Key audit results:
• Good load balance

• Costly use of division and square root inside loops

• Not fully utilising vectorisation in key loops

• NUMA specific data sharing issues lead to long times for memory access

16

GraGLeS2D – RWTH Aachen

• Improvements:
• Restructured code to enable vectorisation

• Used memory allocation library optimised for NUMA machines

• Reordered work distribution to optimise for data locality

17

GraGLeS2D – RWTH Aachen

• Speed up in region of interest is more than 10x
• Overall application speed up is 2.5x

• Finite element code

• C and Fortran code with hybrid MPI+OpenMP parallelisation

• Key audit results:
• High number of function calls
• Costly divisions inside inner loops
• Poor load balance

18

Ateles – University of Siegen

• Performance plan:
• Improve function inlining
• Improve vectorisation
• Reduce duplicate computation

• Inlined key functions → 6% reduction in execution time

• Improved mathematical operations in loops → 28% reduction in
execution time

• Vectorisation: found bug in gnu compiler, confirmed Intel compiler
worked as expected

• 6 weeks software engineering effort

• Customer has confirmed “substantial” performance increase on
production runs

19

Ateles – Proof-of-concept

• Projects undertaken as part of the HECToR service in the UK 2007-
2014

20

Examples of impact of code improvement

• CASINO: Molecular simulation code, used to simulate thermodynamic
effects at the earth’s core
• Improved memory footprint per node using shared memory

• Introduced hybrid parallelism with OpenMP

• Improved parallel I/O

• More efficient use of resources led to £2m saving in compute costs.

21

Financial impacts

• CASTEP & ONETEP: Calculate properties of materials from first principles using
Density Function Theory
• Improvements to memory scaling through new algorithm

• Made better use of shared memory

• Original code limited to 3000 atoms

• Could now deal with 100,000 atoms, enabling
• CASTEP: study of larger structures such as grain boundaries

• ONETEP: study of larger molecules such as proteins and DNA segments

22

Scientific Impacts

• POP seeks to not only describe the performance of an application, but
to identify the root causes of poor performance.

• Better performance leads to both resource savings and improved
science.

• POP is a free service for people and organisations in the European
Union.

https://pop-coe.eu

23

Summary

“The audit of the VAMPIRE code has been extremely helpful

in identifying the hot spots and specific areas to focus on

performance improvements. Preliminary results suggest this

may give a factor of 2 performance improvement on modern

CPUs. I would highly recommend the service for the speed

and usefulness of the audit.”

- Richard Evans, VAMPIRE developer

24

