
EU H2020 Centre of Excellence (CoE) 1 October 2015 – 31 March 2018

Grant Agreement No 676553

Parallel File I/O Profiling Using
Darshan

Wadud Miah, Numerical Algorithms Group (NAG)

• Introduction to parallel storage/file systems;

• Parallel I/O models available for MPI codes;

• Darshan profiling tool, including a live demo;

• Darshan case studies;

• Programming hints and tips on how to write efficient I/O for MPI
codes;

• Questions and answers.

Agenda

2

Introduction to Parallel Storage/File
Systems

3

• Parallel NetCDF and parallel HDF5;
• MPI-IO - Part of MPI 2.0 standard;
• CIO (IBM), DVS (Cray) - aggregates

I/O;
• GPFS, Lustre, PanFS;
• Hard drives and RAID devices.

Includes SSD, NVRAM and traditional
spinning disks.

Parallel I/O Stack

4

• Science is also becoming increasingly data intensive, hence the
importance of high performance I/O;

• File I/O is required for writing simulation data, check pointing,
reading data for model validation. Example projects are SKA, particle
physics (CERN), environmental sciences, genome sequencing;

• File I/O in computational science tends to be write-once and read-
many.

Data Intensive Science

5

Parallel Storage Architecture

Compute nodes

Storage nodes

Storage devices

Network
switch

Burst buffers

Storage nodes

Burst buffers

6

• There are two types of storage nodes: meta-data nodes and data
nodes;

• Meta-data nodes store information such as file owner, access time -
Linux inode data;

• Data nodes actually store the file data. There are more data nodes
than meta-data nodes;

• Lustre and Panasas have dedicated meta-data nodes whereas GPFS
strides the meta-data across storage nodes;

• Parallel file systems are bandwidth bound.

Types of Storage Nodes

7

• The number of MPI processes (N);

• The total amount of data to read or write;

• The size of the files involved, which should make file size / N
sufficiently large;

• Number of files involved;

• Stripe count - number of storage nodes available;

• Stripe size of the parallel file system - block of data that is written to a
storage node.

Parallel I/O Factors

8

Parallel I/O Models Available for
MPI Codes

9

• One file per MPI process (N:N):

• Single file (1:1) model:

Parallel I/O Models (1)

F1

P1

F2

P2

FN

PN

P1 P2 PN

F1

MPI_GATHER

10

• Shared file (N:1) model:

• Alternative shared file (M:1) model (M < N):

Parallel I/O Models (2)

P1 P2 PN

F1

P1 P2 P3 P4 P5

F1

PN

11

• Hybrid model (N:M) where M < N with M groups:

Parallel I/O Models (3)

P1 P2

F1

P3 P4

F2

PN-1 PN

FM

12

Darshan Profiling Tool

13

• Darshan is open-source and
can be downloaded from [1];

• Must be built with the same
MPI distribution as your
application;

• You can use the GNU compilers
for building - doesn’t have to
be the same as the compiler
used to build your application;

• It is developed by Argonne
National Laboratory.

14

Obtaining Darshan

• Just as computation and communication can be profiled, so can file
I/O be profiled;

• Subsequently, file I/O can also be optimised;

• Following I/O methods are used in HPC applications: POSIX, MPI-IO,
parallel NetCDF and parallel HDF5;

• Darshan [1] is able to profile all four methods and can only profile MPI
codes. Must call MPI_FINALIZE, so Darshan will not work if
MPI_ABORT is called;

• Serial codes can be profiled be enclosing the code with MPI_INIT and
MPI_FINALIZE and running it with mpirun -n 1 ./app.exe;

File I/O Profiling (1)

15

• Hybrid MPI + OpenMP is also supported;

• Darshan only profiles codes written in C, C++ and Fortran. Has been
used for MPI4PY (Python) but not fully supported and tested;

• Darshan instruments I/O - not statistical sampling. Thus, profiles are
accurate;

• Each I/O call is intercepted by the library;

• Each MPI process collates I/O metrics and collected when an
MPI_FINALIZE call is made;

• The memory footprint of each MPI process is around 2 MiB.

File I/O Profiling (2)

16

• No code changes are required to use Darshan. Dynamic executables
do not require recompilation;

• Static executables require re-compilation using Darshan MPI
wrappers;

• Darshan provides a summary of I/O statistics as well as a timeline;

• Darshan can be loaded as a dynamic library if profiling a Linux
dynamic executable:

LD_PRELOAD=/lib/libdarshan.so mpirun -n 128 ./wrf.exe

• For profiling MPI4PY, you can only use the LD_PRELOAD variable
method.

Invoking Darshan

17

• After application execution, the trace file can be found in the Darshan
log directory. The filename has the following naming format:

<user>_<experimentID>_<executable>_id<JOB_ID>_<timestamp

>.darshan.gz

• Darshan can create a PDF report from the trace file:

darshan-job-summary.pl <trace file>

• Or individual statistics can be viewed in text format:

darshan-parser <trace file>

Processing the Darshan Trace File

18

• PDF reports on individual files can also be created using:

darshan-summary-per-file.sh <trace file> <output-

directory>

• This is useful to focus on performance metrics on specific input files
or output files;

• The trace files are in binary format and are compressed with the zlib
compression library.

Processing the Darshan Trace File

19

• Darshan overhead of a
6,000 MPI process job with
one file per process [2, 5]:

• The shutdown time for a
shared file of Darshan is
nearly constant with
increasing MPI process
counts.

Overhead of Darshan (1)

20

Overhead of Darshan (2)

21

Darshan Report Graphs

22

• Table below shows file statistics:

• Opening a large number of small files and/or a large number of I/O
operation counts could be a cause of performance problems;

Darshan Report Tables (1)

23

• Ideally, the code should have large access sizes as parallel file systems
are bandwidth bound;

• Parallel NetCDF and parallel HDF5 appear as MPI-IO.

Darshan Report Tables (2)

24

Darshan Timeline

25

Darshan Demonstration

26

Darshan Case Studies

27

• GBmolDD simulates coarse-grained systems of isotropic and/or
anisotropic particles. Uses the Lennard-Jones potential function to
approximate interaction;

• Molecules’ position, energy and temperature is written using one file
per MPI process using POSIX I/O (N:N);

GBmolDD -Computational Chemistry Code (1)

28

• For 64 MPI processes onwards, the I/O is spending more time in file
meta-data mode than in data mode;

• This is because a Linux inode has to be created for each file (64 MPI
process run created 192 files);

• Parallel file systems have fewer meta-data servers, so this quickly
becomes a bottleneck;

• The separate files have to be post-processed, so this takes more time;

• Recommendation was to use a parallel file format such as MPI-IO,
parallel NetCDF or parallel HDF5 using the N:1 or N:M model.

GBmolDD -Computational Chemistry Code (2)

29

• Combustion code [3] was check pointing at intervals using one file per
MPI rank (N:N);

• Writing 29 mesh points and creating two 20 GiB checkpoint files;

• The file creation time (Linux inode) was considerable and reduced the
overall I/O bandwidth;

• Each checkpoint took 728 seconds to complete. The checkpoint files
were pre-created prior to the simulation which reduced the I/O to 25
seconds;

Combustion Physics Code (1)

30

• The code was profiled with Darshan to measure bandwidth per
compute node and a shared file MPI-IO version was implemented;

Combustion Physics Code (2)

31

• Chombo is PDE solver on
adaptive meshes (AMR);

• Each MPI process writes its
own box, resulting in a
large number of
independent write
operations;

• Uses aggregated collective
buffering (ACB).
Performance was
compared with MPI-IO
collective buffering [4];

Chombo - AMR PDE Solver (1)

32

• Darshan profiling showed
the following
characteristics:

• ACB is aggregate collective
buffering:

Chombo - AMR PDE Solver (2)

Ind. I/O Coll. I/O ACB. I/O

MPI-IO
#writes

115268 119808 6912

Max access
size

4 MB 4 MB 8 MB

33

Programming Hints and Tips

34

• Parallel file systems are bandwidth bound, so try to write/read large
amounts of data with fewer operations;

• Reduce the number of new files created. File creation is expensive;

• Avoid POSIX I/O - acceptable for configuration files but not for large
data files;

• Write data contiguously to avoid expensive file seek operations;

• Avoid opening and closing files multiple times. Open it once,
read/write the data and close it at the end;

• Use either MPI-IO, parallel NetCDF or parallel HDF5 for data;

Programming Tips (1)

35

• Use I/O aggregation for small writes;

• Configuration files should be read by a single process and then
broadcasted to other MPI processes;

• Parallel I/O offers further optimisation opportunities using MPI-IO
hints using:

MPI_INFO_SET(hints, key, value, ierr)

• If a shared file model is not suitable for your parallel file system, e.g.
because of file lock contention, then try an N:M approach. N is the
number of MPI processes and M is the number of files where M < N;

• Use collective I/O subroutines instead of independent calls;

Programming Tips (2)

36

• What is the best approach? N:M, M:1 or N:1? This is a trade-off
between file lock contention and meta-data creation time;

• Suggestion: N:1 for small N, M:1 for medium N, and N:M for large N;

• For very large MPI process counts, create two communicators: (N - M)
processes do computation and M processes do I/O asynchronously;

• For the M:1 or N:M approaches, select M = √N assuming the right
balance between number of I/O nodes and compute nodes;

• Always profile your code! This could be included as part of
acceptance testing;

• The recent CPU bugs are likely to affect I/O performance [6, 11],
hence the need for profiling.

Programming Tips (3)

37

• Glenn Lockwood of Argonne National Laboratory - Darshan
developer;

• Phil Carns of Argonne National Laboratory - Darshan developer.

38

Acknowledgement

Questions and Answers

39

[1] http://www.mcs.anl.gov/research/projects/darshan/
[2] "HPC I/O for Computational Scientists: Understanding I/O", P. Carns, et
al. ATPESC 2017
[3] “Understanding and Improving Computational Science Storage Access
through Continuous Characterization”, P. Carns, et al. Proceedings of 27th
IEEE Conference on Mass Storage Systems and Technologies (MSST 2011),
2011
[4] “Collective I/O Optimizations for Adaptive Mesh Refinement Data Writes
on Lustre File System”, D. Devendran, et al. CUG 2016
[5] “Modular HPC I/O Characterization with Darshan”. S. Snyder, et al.
Proceedings of 5th Workshop on Extreme-scale Programming Tools (ESPT
2016), 2016.
[6] https://www.hpcwire.com/2018/01/10/will-meltdown-spectre-patches-
affect-hpc-workloads/

References (1)

40

https://www.hpcwire.com/2018/01/10/will-meltdown-spectre-patches-affect-hpc-workloads/

[7] “High Performance I/O”, A. Jackson, et al. 2011 19th International
Euromicro Conference on Parallel, Distributed and Network-Based
Processing, 2011;

[8] “High Performance Parallel I/O”, Prabhat and Q. Koziol. CRC Press,
2014;

[9] “Scalable Input/Output”, D. Reed, MIT Press, 2004;

[10] “Scientific Data Management”, Arie Shoshani and Dorom Rotem.
CRC Press, 2009;

[11] https://www.hpcwire.com/2018/01/17/researchers-measure-
impact-meltdown-spectre-patches-hpc-workloads/

41

References (2)

42

Contact:
https://www.pop-coe.eu
mailto:pop@bsc.es

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553.

Performance Optimisation and Productivity
A Centre of Excellence in Computing Applications

