Parallel File 1/O Profiling Using

Darshan
Wadud Miah, Numerical Algorithms Group (NAG)

EU H2020 Centre of Excellence (CoE) 1 October 2015 —31 March 2018

Grant Agreement No 676553

Agenda

* Introduction to parallel storage/file systems;
* Parallel I/O models available for MPI codes;
e Darshan profiling tool, including a live demo;

e Darshan case studies;

* Programming hints and tips on how to write efficient I/O for MPI
codes;

e Questions and answers.

Introduction to Parallel Storage/File
Systems

Parallel I/O Stack

Parallel File System

I/O Hardware

NN

. Paral
. MPI-
. CIO (

1/O;

009

el NetCDF and parallel HDF5;
O - Part of MPI 2.0 standard;
BM), DVS (Cray) - aggregates

- GPFS, Lustre, PanFS;
. Hard

drives and RAID devices.

Includes SSD, NVRAM and traditional
spinning disks.

Data Intensive Science 0009

* Science is also becoming increasingly data intensive, hence the
importance of high performance 1/0;

* File 1/0O is required for writing simulation data, check pointing,
reading data for model validation. Example projects are SKA, particle
physics (CERN), environmental sciences, genome sequencing;

* File I/O in computational science tends to be write-once and read-
many.

Parallel Storage Architecture 0009

Compute nodes

Network
switch

=

Burst buffers

Burst buffers 'l
Storage nodes »ig«
t

Storage nodes

Storage devices

Types of Storage Nodes 009

* There are two types of storage nodes: meta-data nodes and data
nodes;

 Meta-data nodes store information such as file owner, access time -
Linux inode data;

e Data nodes actually store the file data. There are more data nodes
than meta-data nodes;

e Lustre and Panasas have dedicated meta-data nodes whereas GPFS
strides the meta-data across storage nodes;

* Parallel file systems are bandwidth bound.

Parallel I/O Factors

* The number of MPI processes (N);
* The total amount of data to read or write;

* The size of the files involved, which should make file size / N
sufficiently large;

* Number of files involved;
* Stripe count - number of storage nodes available;

* Stripe size of the parallel file system - block of data that is written to a
storage node.

Parallel 1/0 Models Available for
MPI Codes

Parallel I/O Models (1)

* One file per MPI process (N:N):

* Single file (1:1) model:

.l

Parallel I/O Models (2)

* Shared file (N:1) model:

e Alternative shared file (M:1) model (M < N):

Parallel I/O Models (3)

* Hybrid model (N:M) where M < N with M groups:

CE I SR =

Darshan Profiling Tool

Obtaining Darshan

e Darshan is open-source and
can be downloaded from [1];

* Must be built with the same
MPI distribution as your
application;

* You can use the GNU compilers
for building - doesn’t have to
be the same as the compiler
used to build your application;

* It is developed by Argonne
National Laboratory.

Darshan

HPC I/O Characterization Tool

3] Publications Download Crocumentation Bug reports Ceveloper access Data

Welcome to the Darshan project
z July 31st, 2009 £ No comments

This is the home page for Darshan, a scalable HPC IO characterization tool. Darshan is
designed to capture an accurate picture of application I/O behavior, including properties such
as patterns of access within files, with minimum overhead. The name is taken from a Sanskrit
word for "sight” or "vision”.

Darshan can be used to investigate and tune the I/O behavior of complex HPC applications. In
addition, Darshan’s lightweight design makes it suitable for full time deployment for workload
characterization of large systems. We hope that such studies will help the storage research
community to better serve the needs of scientific computing.

Darshan was originally developed on the IBM Blue Gene series of computers deployed at the
Argonne Leadership Computing Facility, but it is portable across a wide varniety of platforms
include the Cray XE&, Cray XC30, and Linux clusters. Darshan routinely instruments jobs using
up to 786,432 compute cores on the Mira system at ALCR

You will find current news about the Darshan project posted below. Additional documentation
and details about the Darshan are available from the links at the top of this page.

14

File 1/0 Profiling (1)

e Just as computation and communication can be profiled, so can file
/0 be profiled;

* Subsequently, file /O can also be optimised:;

* Following I/O methods are used in HPC applications: POSIX, MPI-IO,
parallel NetCDF and parallel HDFS5;

e Darshan [1] is able to profile all four methods and can only profile MPI
codes. Must call MPT FINALIZE, so Darshan will not work if
MPI ABORT is called;

* Serial codes can be profiled be enclosing the code with MPT INIT and
MPI FINALIZE and runningit withmpirun -n 1 ./app.exe;

15

File 1/O Profiling (2) 009

* Hybrid MPI + OpenMP is also supported;

e Darshan only profiles codes written in C, C++ and Fortran. Has been
used for MPI4PY (Python) but not fully supported and tested;

* Darshan instruments 1/O - not statistical sampling. Thus, profiles are
accurate;

e Each 1/0 call is intercepted by the library;

* Each MPI process collates I/0O metrics and collected when an
MPI FINALIZE call is made;

 The memory footprint of each MPI process is around 2 MiB.

16

Invoking Darshan

* No code changes are required to use Darshan. Dynamic executables
do not require recompilation;

e Static executables require re-compilation using Darshan MPI
wrappers;

* Darshan provides a summary of /O statistics as well as a timeline;

* Darshan can be loaded as a dynamic library if profiling a Linux
dynamic executable:

LD PRELOAD=/lib/libdarshan.so mpirun -n 128 ./wrf.exe

* For profiling MPI4PY, you can only use the LD PRELOAD variable
method.

17

Processing the Darshan Trace File

 After application execution, the trace file can be found in the Darshan
log directory. The filename has the following naming format:

<user> <experimentID> <executable> 1d<JOB ID> <timestamp
>.darshan.gz

* Darshan can create a PDF report from the trace file:

darshan-job-summary.pl <trace file>

e Or individual statistics can be viewed in text format:

darshan—-parser <trace file>

18

Processing the Darshan Trace File

* PDF reports on individual files can also be created using:

darshan-summary-per—-file.sh <trace file> <output-
directory>

* This is useful to focus on performance metrics on specific input files
or output files;

* The trace files are in binary format and are compressed with the zlib
compression library.

19

Overhead of Darshan (1)

75 T T]]

* Darshan overhead of a 7o B _
6,000 MPI process job with % =l - T]
one file per process [2,5]: & s | = == _

g 50 — —
45 — —]
40 | | | |
No Darshan Darshan Darshan
Darshan 2.3.0 3.1.0 3.1.0-mmap

* The shutdown timefora g s ——— . .
shared file of Darshanis § 25 pasnidyandio -
nearly constant with E 2y !
increasing MPI process 5 1'? "]
counts. 2l]

ﬁ _ -l] e i _—— =
8 0 - -+ - - -

2400 4800 7200 9600 12000
Number of processes

20

Overhead of Darshan (2)

. The shutdown time for one g 7
. & Darshan 2.3.0 ———
file per process of Darshan 8 6 Darshan 3.1.0 é :
. . . . KZJ Darshan 3.1.0-mmap ——— m
scales linearly with increasing g 5r -
MPI process counts; T 4T = -
g or - -
- Some HPC systems switchon 2 ,| L - - = B |
Darshan profiling for all their § 4| J__¢. - |
jobs, so itis very lightweight. § o | | | | |

2400 4800 7200 9600 12000
Number of processes

21

Darshan Report Graphs

FAvverage VO cost per process VD Oparation Counts
100 2500
o 80 - 2000 |
E =
= =
= &0 | E 1500 |
k= 2
o
:% 40 = 1000 |
3 =
=
& 20 |- E soo |
(=1
L]
I:l |:| - | I ——
—E'I:H:l 1 1 1 1 1 1 1
Read Wrhte Open Siat Seek Mmap Feync
i i B POSE — MPI-ID Cooll, e—
Cfvar (including sppicaticn computs) —" MPI-10 Indep. e STDICD
POSIX Access Sizes MPI-KD Access Sizes &
2500 - 2500
E_EC‘:C- - E_EIII-IIHZI -
E =
e
= 1500 | = 1500 |
= =
= 1000 | = 1000 |
3 3
S |- 500 |
o N N R H 2 o e - . W o 7
e 2, ;%_q,r_ By -!r_ﬂftr q,_-,; (=3 w, P, qr_-'i,r- %- %E"&r q,;,.) (=
_; e, * i
% e T @ % % O M 22

Darshan Report Tables (1)

* Table below shows file statistics:

File Count Summary

Most Commeon Access Sizes (estimated by POSIX I/O access offsets)

(POSIX or MPLIO) type | number of files | avg. size | max size
access size | count total opened 7 228M 256M

POSIX | 1048576 | 4096 Ei:ii EE ? 1 E-I?I 1 E-I?I
MPI-IO § | 1048576 | 4096 read/write files g 256M 256M
IT‘JDTE: MPI-IQ accesses are given in created files Q 228M 256M

terms of aggregate datatype size.

* Opening a large number of small files and/or a large number of |/O
operation counts could be a cause of performance problems;

23

Darshan Report Tables (2)

* |deally, the code should have large access sizes as parallel file systems
are bandwidth bound;

* Parallel NetCDF and parallel HDF5 appear as MPI-10.

24

Darshan Timeline

Timespan from first to last read access on independent files (POSIX and STDIO)

1 1 1 1
T - i
g} - i
e 2 - i
§ e — |
I oaf — 1
= L |
1t - i
ot - i

| | | |

00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01
hours:minutes:seconds
Timespan from first to last write access on independent files (POSIX and STDIO)

1 1 1 1
7 i
3 i
g B i
5 4]
L 3 .
= 5 i
'| .
.|:| .

| | | |

00:00:00 00:00:00 00:00:00 00:00:00 00:00:00 00:00:01

hours:minutes:seconds 25

Darshan Demonstration

Darshan Case Studies

GBmolDD -Computational Chemistry Code (1)

* GBmolDD simulates coarse-grained systems of isotropic and/or
anisotropic particles. Uses the Lennard-Jones potential function to
approximate interaction;

* Molecules’ position, energy and temperature is written using one file
per MPI process using POSIX I/O (N:N);

e Tatili - < . .
010 /O hLd'dbl]l[};" (1024 dimer molecules) 00 - /O
+— 80% of linear bandwidth B Application
[t I cati i 6| | WEEE Applicati ta-dat;
_ Application scalability | /| pphication meta-data
ool | —— Application bandwidth -

-4 60

o

Lad
T

Bandwidth scalahility

Bandwidth (MB/s)
s
3
Percentage of GBmolDD runtime

100l e A
¥
200 -
. - T,
100 Ir
0 4 8 16 32 ! 2
MPI processes MPI processes

28

(a) I/O scalability (b) I/O percentage of runtime

GBmolDD -Computational Chemistry Code (2)

* For 64 MPI processes onwards, the I/O is spending more time in file
meta-data mode than in data mode;

 This is because a Linux inode has to be created for each file (64 MPI
process run created 192 files);

* Parallel file systems have fewer meta-data servers, so this quickly
becomes a bottleneck;

* The separate files have to be post-processed, so this takes more time;

e Recommendation was to use a parallel file format such as MPI-I0,
parallel NetCDF or parallel HDF5 using the N:1 or N:M model.

29

Combustion Physics Code (1)

* Combustion code [3] was check pointing at intervals using one file per
MPI rank (N:N);

* Writing 2° mesh points and creating two 20 GiB checkpoint files;

* The file creation time (Linux inode) was considerable and reduced the
overall I/O bandwidth;

* Each checkpoint took 728 seconds to complete. The checkpoint files
were pre-created prior to the simulation which reduced the I/0 to 25
seconds;

30

Combustion Physics Code (2) 009

* The code was profiled with Darshan to measure bandwidth per

compute node and a shared file MPI-I0O version was implemented,;
0.3

0.280332

. The code also used MPI 0.25 |
collectives to aggregate write
operations with block

0o | 0.196666

MiB/s/CN

alignment to increase T
bandwidth; 0.1
. Writes of 1 to 4 MiB were o N
aggregated to 16 MiB writes; 0 = = -
%fb f%f'& JQ”F,.-«'D
- Number of write operations S5, VOMethod &,

was reduced from 16k to 4k.

31

Chombo - AMR PDE Solver (1)

&0

* Chombo is PDE solver on
adaptive meshes (AMR); N

* Each MPI process writes its ™
own box, resulting in a
large number of :
independent write
operations;

e Uses aggregated collective :
buffering (ACB).
Performance was
compared with MPI-10
collective buffering [4];

61 GE file 494 GB file 987 GB file

}

hy (
z

=

B |ndependent |/O
B Collective buffering
WACB

AMR Hiera

Time to Write

32

Chombo - AMR PDE Solver (2)

* Darshan profiling showed g ey .

the following MPI-IO 115268 119808 6912
characteristics: #writes
Max access 4 MB 4 MB 8 MB
size

Distribution of write sizes at MPI level
1.E+06

1.E+05
* ACB is aggregate collective e
. . 1.E+03 H Independent I/0
b Uffe rl ng * M Collective buffering
1.E+02 B ACB
1.E+01
1.E+00

1.E-01

33

Programming Hints and Tips

Programming Tips (1) 009

* Parallel file systems are bandwidth bound, so try to write/read large
amounts of data with fewer operations;

* Reduce the number of new files created. File creation is expensive;

 Avoid POSIX I/O - acceptable for configuration files but not for large
data files;

* Write data contiguously to avoid expensive file seek operations;

* Avoid opening and closing files multiple times. Open it once,
read/write the data and close it at the end:

e Use either MPI-10, parallel NetCDF or parallel HDF5 for data;

35

Programming Tips (2)

* Use I/O aggregation for small writes;

* Configuration files should be read by a single process and then
broadcasted to other MPI processes;

* Parallel 1/O offers further optimisation opportunities using MPI-IO
hints using:
MPI INFO SET(hints, key, value, 1err)

* If a shared file model is not suitable for your parallel file system, e.g.
because of file lock contention, then try an N:M approach. N is the
number of MPI processes and M is the number of files where M < N;

* Use collective I/0 subroutines instead of independent calls;

36

Programming Tips (3) 009

* What is the best approach? N:M, M:1 or N:1? This is a trade-off
between file lock contention and meta-data creation time;

e Suggestion: N:1 for small N, M:1 for medium N, and N:M for large N;

* For very large MPI process counts, create two communicators: (N - M)
processes do computation and M processes do I/O asynchronously;

* For the M:1 or N:M approaches, select M = VN assuming the right
balance between number of I/O nodes and compute nodes;

* Always profile your code! This could be included as part of
acceptance testing;

* The recent CPU bugs are likely to affect I/O performance [6, 11],
hence the need for profiling.

37

Acknowledgement

* Glenn Lockwood of Argonne National Laboratory - Darshan
developer;

* Phil Carns of Argonne National Laboratory - Darshan developer.

38

Questions and Answers

References (1) 009

1] http://www.mcs.anl.gov/research/projects/darshan/

2] "HPC 1/0 for Computational Scientists: Understanding I/0", P. Carns, et
al. ATPESC 2017

3] “Understanding and Improving Computatlonal Science Storage Access
through Continuous Characterization”, P. Carns, et al. Proceedings of 27th

I2EOE1E1Conference on Mass Storage Systems and Technologles (MSST 2011),

4] “Collective 1/O Optimizations for Adaptive Mesh Refinement Data Writes
on Lustre File System”, D. Devendran, et al. CUG 2016

5] “Modular HPC I/O Characterization with Darshan”. S. Snyder, et al.

Proceedings of 5th Workshop on Extreme-scale Programmmg Tools (ESPT
2016), 2016.

[6; https://www.hpcwire.com/2018/01/10/will-meltdown-spectre-patches-
affect-hpc-workloads/

40

https://www.hpcwire.com/2018/01/10/will-meltdown-spectre-patches-affect-hpc-workloads/

References (2)

[7] “High Performance 1/0”, A. Jackson, et al. 2011 19th International
Euromicro Conference on Parallel, Distributed and Network-Based
Processing, 2011;

[8] “High Performance Parallel I/O”, Prabhat and Q. Koziol. CRC Press,
2014;

[9] “Scalable Input/Output”, D. Reed, MIT Press, 2004;

[10] “Scientific Data Management”, Arie Shoshani and Dorom Rotem.
CRC Press, 2009;

[11] https://www.hpcwire.com/2018/01/17/researchers-measure-
impact-meltdown-spectre-patches-hpc-workloads/

41

O 0 0 Performance Optimisation and Productivity

A Centre of Excellence in Computing Applications

Contact: S E_

https://www.pop-coe.eu A
mailto:pop@bsc.es R A

This project has received funding from the European Union‘s Horizon 2020 research and innovation programme under grant agreement No 676553.

