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• Introduction to parallel storage/file systems;

• Parallel I/O models available for MPI codes;

• Darshan profiling tool, including a live demo;

• Darshan case studies;

• Programming hints and tips on how to write efficient I/O for MPI 
codes;

• Questions and answers.

Agenda
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Introduction to Parallel Storage/File 
Systems
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• Parallel NetCDF and parallel HDF5;
• MPI-IO - Part of MPI 2.0 standard;
• CIO (IBM), DVS (Cray) - aggregates 

I/O;
• GPFS, Lustre, PanFS;
• Hard drives and RAID devices. 

Includes SSD, NVRAM and traditional 
spinning disks.

Parallel I/O Stack
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• Science is also becoming increasingly data intensive, hence the 
importance of high performance I/O;

• File I/O is required for writing simulation data, check pointing, 
reading data for model validation. Example projects are SKA, particle 
physics (CERN), environmental sciences, genome sequencing;

• File I/O in computational science tends to be write-once and read-
many.

Data Intensive Science
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Parallel Storage Architecture
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• There are two types of storage nodes: meta-data nodes and data
nodes;

• Meta-data nodes store information such as file owner, access time -
Linux inode data;

• Data nodes actually store the file data. There are more data nodes 
than meta-data nodes;

• Lustre and Panasas have dedicated meta-data nodes whereas GPFS 
strides the meta-data across storage nodes;

• Parallel file systems are bandwidth bound.

Types of Storage Nodes
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• The number of MPI processes (N);

• The total amount of data to read or write;

• The size of the files involved, which should make file size / N  
sufficiently large;

• Number of files involved;

• Stripe count - number of storage nodes available;

• Stripe size of the parallel file system - block of data that is written to a 
storage node.

Parallel I/O Factors
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Parallel I/O Models Available for 
MPI Codes
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• One file per MPI process (N:N):

• Single file (1:1) model:

Parallel I/O Models (1)
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• Shared file (N:1) model:

• Alternative shared file (M:1) model (M < N):

Parallel I/O Models (2)
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• Hybrid model (N:M) where M < N with M groups:

Parallel I/O Models (3)
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Darshan Profiling Tool
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• Darshan is open-source and 
can be downloaded from [1];

• Must be built with the same 
MPI distribution as your 
application;

• You can use the GNU compilers 
for building - doesn’t have to 
be the same as the compiler 
used to build your application;

• It is developed by Argonne 
National Laboratory.
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• Just as computation and communication can be profiled, so can file 
I/O be profiled;

• Subsequently, file I/O can also be optimised;

• Following I/O methods are used in HPC applications: POSIX, MPI-IO, 
parallel NetCDF and parallel HDF5;

• Darshan [1] is able to profile all four methods and can only profile MPI 
codes. Must call MPI_FINALIZE, so Darshan will not work if 
MPI_ABORT is called;

• Serial codes can be profiled be enclosing the code with MPI_INIT and 
MPI_FINALIZE and running it with mpirun -n 1 ./app.exe;

File I/O Profiling (1)
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• Hybrid MPI + OpenMP is also supported;

• Darshan only profiles codes written in C, C++ and Fortran. Has been 
used for MPI4PY (Python) but not fully supported and tested; 

• Darshan instruments I/O - not statistical sampling. Thus, profiles are 
accurate;

• Each I/O call is intercepted by the library;

• Each MPI process collates I/O metrics and collected when an 
MPI_FINALIZE call is made;

• The memory footprint of each MPI process is around 2 MiB. 

File I/O Profiling (2)
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• No code changes are required to use Darshan. Dynamic executables 
do not require recompilation;

• Static executables require re-compilation using Darshan MPI 
wrappers;

• Darshan provides a summary of I/O statistics as well as a timeline;

• Darshan can be loaded as a dynamic library if profiling a Linux 
dynamic executable:

LD_PRELOAD=/lib/libdarshan.so mpirun -n 128 ./wrf.exe

• For profiling MPI4PY, you can only use the LD_PRELOAD variable 
method.

Invoking Darshan
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• After application execution, the trace file can be found in the Darshan 
log directory. The filename has the following naming format:

<user>_<experimentID>_<executable>_id<JOB_ID>_<timestamp

>.darshan.gz

• Darshan can create a PDF report from the trace file:

darshan-job-summary.pl <trace file>

• Or individual statistics can be viewed in text format:

darshan-parser <trace file>

Processing the Darshan Trace File
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• PDF reports on individual files can also be created using:

darshan-summary-per-file.sh <trace file> <output-

directory>

• This is useful to focus on performance metrics on specific input files 
or output files;

• The trace files are in binary format and are compressed with the zlib 
compression library.

Processing the Darshan Trace File
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• Darshan overhead of a 
6,000 MPI process job with 
one file per process [2, 5]:

• The shutdown time for a 
shared file of Darshan is 
nearly constant with 
increasing MPI process 
counts. 

Overhead of Darshan (1)

20



Overhead of Darshan (2)
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Darshan Report Graphs
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• Table below shows file statistics:

• Opening a large number of small files and/or a large number of I/O 
operation counts could be a cause of performance problems;

Darshan Report Tables (1)
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• Ideally, the code should have large access sizes as parallel file systems 
are bandwidth bound;

• Parallel NetCDF and parallel HDF5 appear as MPI-IO.

Darshan Report Tables (2)
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Darshan Timeline
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Darshan Demonstration

26



Darshan Case Studies
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• GBmolDD simulates coarse-grained systems of isotropic and/or 
anisotropic particles. Uses the Lennard-Jones potential function to 
approximate interaction;

• Molecules’ position, energy and temperature is written using one file 
per MPI process using POSIX I/O (N:N);

GBmolDD -Computational Chemistry Code (1)
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• For 64 MPI processes onwards, the I/O is spending more time in file 
meta-data mode than in data mode;

• This is because a Linux inode has to be created for each file (64 MPI 
process run created 192 files);

• Parallel file systems have fewer meta-data servers, so this quickly 
becomes a bottleneck;

• The separate files have to be post-processed, so this takes more time;

• Recommendation was to use a parallel file format such as MPI-IO, 
parallel NetCDF or parallel HDF5 using the N:1 or N:M model.

GBmolDD -Computational Chemistry Code (2)
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• Combustion code [3] was check pointing at intervals using one file per 
MPI rank (N:N);

• Writing 29 mesh points and creating two 20 GiB checkpoint files;

• The file creation time (Linux inode) was considerable and reduced the 
overall I/O bandwidth;

• Each checkpoint took 728 seconds to complete. The checkpoint files 
were pre-created prior to the simulation which reduced the I/O to 25 
seconds;

Combustion Physics Code (1)
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• The code was profiled with Darshan to measure bandwidth per 
compute node and a shared file MPI-IO version was implemented;

Combustion Physics Code (2)
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• Chombo is PDE solver on 
adaptive meshes (AMR);

• Each MPI process writes its 
own box, resulting in a 
large number of 
independent write 
operations;

• Uses aggregated collective 
buffering (ACB). 
Performance was 
compared with MPI-IO 
collective buffering [4];

Chombo - AMR PDE Solver (1)
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• Darshan profiling showed 
the following 
characteristics:

• ACB is aggregate collective 
buffering:

Chombo - AMR PDE Solver (2)

Ind. I/O Coll. I/O ACB. I/O

MPI-IO 
#writes

115268 119808 6912

Max access 
size

4 MB 4 MB 8 MB
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Programming Hints and Tips
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• Parallel file systems are bandwidth bound, so try to write/read large 
amounts of data with fewer operations;

• Reduce the number of new files created. File creation is expensive;

• Avoid POSIX I/O - acceptable for configuration files but not for large 
data files; 

• Write data contiguously to avoid expensive file seek operations;

• Avoid opening and closing files multiple times. Open it once, 
read/write the data and close it at the end;

• Use either MPI-IO, parallel NetCDF or parallel HDF5 for data;

Programming Tips (1)
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• Use I/O aggregation for small writes;

• Configuration files should be read by a single process and then 
broadcasted to other MPI processes;

• Parallel I/O offers further optimisation opportunities using MPI-IO 
hints using:

MPI_INFO_SET( hints, key, value, ierr ) 

• If a shared file model is not suitable for your parallel file system, e.g. 
because of file lock contention, then try an N:M approach. N is the 
number of MPI processes and M is the number of files where M < N;

• Use collective I/O subroutines instead of independent calls;

Programming Tips (2)
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• What is the best approach? N:M, M:1 or N:1? This is a trade-off 
between file lock contention and meta-data creation time;

• Suggestion: N:1 for small N, M:1 for medium N, and N:M for large N;

• For very large MPI process counts, create two communicators: (N - M) 
processes do computation and M processes do I/O asynchronously;

• For the M:1 or N:M approaches, select M = √N assuming the right 
balance between number of I/O nodes and compute nodes;

• Always profile your code! This could be included as part of 
acceptance testing;

• The recent CPU bugs are likely to affect I/O performance [6, 11], 
hence the need for profiling.

Programming Tips (3)
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• Glenn Lockwood of Argonne National Laboratory - Darshan 
developer;

• Phil Carns of Argonne National Laboratory - Darshan developer.
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