
ADF & POP

Alexei Yakovlev <yakovlev@scm.com>

SCM, Amsterdam, The Netherlands

The ADF Modeling Suite

Molecular DFT Periodic DFT Approximate DFT

(tight-binding)

Semi-empirical

NDDO by J.Stewart

Reactive force-field-

based molecular

dynamics

Thermodynamic

properties of liquids

and mixtures

The ADF Modeling Suite

POP targets

New HF exchange impl.

1. Performance audit

2. Performance plan

1. Performance audit

2. Performance plan

3. Proof of concept (in progress)

(not discussed today)

Density matrix purification

1. Performance audit

2. Performance plan

3. Proof of concept

Performed by Sally Bridgwater, Nick Dingle, and Jonathan Boyle from NAG

POP #1 – ADF

Basic algorithm:

do atom_pair = 1, N**2

calculate sub-matrix of Ki,j corresponding to the atoms of this pair

end do

New Hartree-Fock exchange implementation

POP #1 – ADF

Implementation:

class(GlobalIteratorType), pointer :: iterator

iterator => MakeSuitableIterator()

do while (iterator%Next()) !Uses MPI + POSIX shmem to distribute work

atom_pair = iterator%getIndex()

calculate sub-matrix of Ki,j corresponding to the atoms of this pair

end do

New Hartree-Fock exchange implementation

POP #1 – ADF
New Hartree-Fock exchange implementation

M
P

I
ra

n
k
s

HybridGlobalIterator: MPI between nodes + shmem inside node. 128 processes, 45

atoms

blue – application, red – MPI, total time: 4.24s

POP #1 – ADF

Main results:

• The Load Balance Efficiency is low, this is due to unequal distribution of work.

• The Computational Scalability is low but this was found to be an artefact of the

time cores spend idle waiting to be distributed work.

• The Communication Efficiency is generally good

• Recommendation: improve the load balancing algorithm

New Hartree-Fock exchange implementation

POP #1 – ADF

DynLoadBalanceType: a sub-class of GlobalIteratorType with a dedicated

dispatcher process

New Hartree-Fock exchange implementation

M
P

I
ra

n
k
s

blue – application, red – MPI, total time: 1.992s

POP #2 – DFTB

• 𝑭𝑪 = 𝑺𝑪𝜀, where 𝑭 – Fock matrix, 𝑺 – overlap matrix, 𝑪 – MO coefficients matrix

• 𝑪 → 𝑷 the density matrix

• 𝑭, 𝑷 and 𝑺 are sparse for very large systems, 𝑪 is not

• Block-sparse matrix: dense (up to) 64-by-64 blocks

• Blocks containing zeros only are not allocated

• Blocks are distributed the ScaLAPACK way → easy to convert to/from ScaLAPACK

Filled block Empty block

Distributed Block-Sparse Matrix

Density matrix purification method

• Calculate the density matrix 𝑷 directly from 𝑭 and 𝑺 without computing 𝑪 by a

sequence of matrix-matrix multiplications:

• 𝑷𝟎 = 𝑺−
𝟏

𝟐𝑭𝑺−
𝟏

𝟐

• 𝑷𝒊+𝟏 =
𝑷𝒊

2, 𝑇𝑟 𝑷𝒊 > 𝑛

𝑰 − 𝑷𝒊 − 𝑰 2, 𝑇𝑟 𝑷𝒊 < 𝑛

POP #2 – DFTB
Block-Sparse Matrix

Block-sparse matrix-matrix multiplication: a variant of the SUMMA algorithm

http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

• Broadcast non-zero blocks in the processor row and column

• Compute local part of the result matrix

POP #2 – DFTB
Distributed Block-Sparse Matrix

http://www.netlib.org/lapack/lawnspdf/lawn96.pdf

Main results:

• The DFTB’s matrix–matrix multiplication kernel was rewritten to expose the
possibility of overlapping communication and computation, but the resulting
reduction in runtime was not as large as hoped.

• The overhead of progressing messages in the background during computation
outweighed any reduction in runtime from overlapping the two activities.

• Linking the new code with other MPI libraries might lead to a more significant
reduction in runtime.

POP #2 – DFTB
Distributed Block-Sparse Matrix

Questions?

Thank you!

