

## Performance Optimization and Productivity

EU H2020 Center of Excellence (CoE)



ISC 2017 BOF POP improves HPC applications Frankfurt, June 20<sup>th</sup> 2017





### • A Center of Excellence

- On Performance Optimization and Productivity
- Promoting best practices in performance analysis and parallel programming
- Providing Services
  - Precise understanding of application and system behavior
  - Suggestion/support on how to refactor code in the most productive way
- Horizontal
  - Transversal across application areas, platforms, scales
- For academic AND industrial codes and users



### Partners

### • Who?

- BSC (coordinator), ES
- HLRS, DE
- JSC, DE
- NAG, UK
- RWTH Aachen, IT Center, DE
- TERATEC, FR

#### A team with

- Excellence in performance tools and tuning
- Excellence in programming models and practices
- Research and development background AND proven commitment in application to real academic and industrial use cases

BSC





FORSCHUNGSZENTRUM





tec 📲

## Motivation

### Why?

- Complexity of machines and codes
  - $\rightarrow$  Frequent lack of quantified understanding of actual behavior
  - $\rightarrow$  Not clear most productive direction of code refactoring
- Important to maximize efficiency (performance, power) of compute intensive applications and the productivity of the development efforts

### Target

 Parallel programs , mainly MPI /OpenMP ... although can also look at CUDA, OpenCL, Python, ...



## 3 levels of services

#### **?** Application Performance Audit

- Primary service
- Identify performance issues of customer code (at customer site)
- Small Effort (< 1 month)

#### **! Application Performance Plan**

- Follow-up on the service
- Identifies the root causes of the issues found and qualifies and quantifies approaches to address the issues
- Longer effort (1-3 months)

#### ✓ Proof-of-Concept

- Experiments and mock-up tests for customer codes
- Kernel extraction, parallelization, mini-apps experiments to show effect of proposed optimizations
- 6 months effort





demonstrator



## **Target customers**



- Assessment of detailed actual behavior
- Suggestion of more productive directions to refactor code

#### • Users

- Assessment of achieved performance on specific production conditions
- Possible improvements modifying environment setup
- Evidences to interact with code provider

### Infrastructure operators

- Assessment of achieved performance in production conditions
- Possible improvements modifying environment setup
- Information for allocation processes
- Training of support staff

### Vendors

- Benchmarking
- Customer support
- System dimensioning/design



## Activities (May 2017)



### • Services

- Completed/reporting: 59
- Reporting: 7
- Codes being analyzed: 16
- Waiting user / New: 18

### • Type

- Mostly Audits
  - 5 -15 pages
  - Level of detail



## Best practices in Performance analysis

### • Powerful tools ...

- Extrae + Paraver
- Score-P + Scalasca/TAU/Vampir + Cube
- Dimemas, Extra-P
- Other commercial tools

### ... and techniques

- Clustering, modeling, projection, extrapolation, memory access patterns,
- ... with extreme detail ...
- ... and up to extreme scale

#### • Unify methodologies

- Structure
  - Spatio temporal / syntactic
- Metrics
  - Parallel fundamental factors: Efficiency, Load balance, Serialization
  - Programming model related metrics
  - User level code sequential performance
- Hierarchical search
  - From high level fundamental behavior to its causes
- To deliver insight
- To estimate potentials



### **Fundamental performance factors**

- Factors modeling parallel efficiency
  - Load balance (LB)
  - Communication
    - Serialization (or Micro load balance)
    - Transfer
- Factors describing serial behavior
  - Computational complexity: **#instr**
  - Performance: IPC
  - Core frequency
  - Actual values, scaling behavior, impact on parallel efficiency factors



CommEff



 $\eta_{\parallel} = LB * Ser * Trf$ 

### Efficiencies

|                          | 2      | 4      | 8      | 16     |  |
|--------------------------|--------|--------|--------|--------|--|
| Parallel Efficiency      | 0.9834 | 0.9436 | 0.8980 | 0.8478 |  |
| Load Balance             | 0.9871 | 0.9687 | 0.9099 | 0.9177 |  |
| Serialization efficiency | 0.9975 | 0.9770 | 0.9938 | 0.9395 |  |
| Transfer Efficiency      | 0.9988 | 0.9970 | 0.9931 | 0.9833 |  |
| Computation Efficiency   | 1.000  | 0.9590 | 0.8680 | 0.6953 |  |
| Global efficiency        | 0.9834 | 0.9049 | 0.7795 | 0.5894 |  |

|                                | 2     | 4      | 8      | 16     |
|--------------------------------|-------|--------|--------|--------|
| <b>IPC Scaling Efficiency</b>  | 1.000 | 0.9932 | 0.9591 | 0.8421 |
| Instruction Scaling Efficiency | 1.000 | 0.9721 | 0.9393 | 0.9075 |
| Core frequency efficiency      | 1.000 | 0.9932 | 0.9635 | 0.9098 |





## Other activities



#### Promotion and dissemination

- Market and community development
- Dissemination material and events

#### Customer advocacy

• Gather customers feedback, ensure satisfaction, steer activities

#### Sustainability

• Explore business models

#### Training

- Best practices on the use of the tools and programming models
  - Cooperation with other CoEs (EoCoE)
  - Lot of interest ... customers want to learn how to do it themselves





### **Performance Optimisation and Productivity** A Centre of Excellence in Computing Applications

### Contact: https://www.pop-coe.eu mailto:pop@bsc.es



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 676553.

### Scalasca (www.scalasca.org)





# **#Score-P** Tool Ecosystem -- Status

#### • Score-P (<u>www.score-p.org</u>)

- Parallel Program Instrumentation and Profile/Trace Measurement
  - MPI, OpenMP, SHMEM, CUDA, OpenCL, OmpSs support
- Latest version: 3.0-rc1
  - New: User function sampling + MPI measurement, OpenACC support
- Scalasca (<u>www.scalasca.org</u>)
  - Scalable Profile and Trace analysis
  - Latest version: 2.3.1
    - New: More platforms (Xeon Phi, K computer, ARM64, ...), Score-P 2.X and 3.x support
- Cube (<u>www.scalasca.org</u>)
  - Profile browser
  - Latest version: 4.3.4
    - Soon: Client/server architecture, more analysis plugins, performance improvements



## BSC Performance Tools (www.bsc.es/paraver)



EC-EARTH

1

**BSC-ES** 

2000 VIPS

1500

1000

500





#### Tracking performance evolution



## BSC Performance Tools (www.bsc/es/paraver)

What if ...





Cluster 1



## BSC Performance Tools (www.bsc/es/parave





